用于为海洋中的无人水下航行器 (UUV) 或自主传感系统提供动力的热梯度能量产生技术主要处于研发阶段或以有限的规模商业化应用,而盐度梯度能量产生技术尚未得到充分研究。对适合长期部署的自供电 UUV 的需求日益增长,需要进一步研究小规模海洋梯度能量系统。在本研究中,我们对利用海洋热梯度或盐度梯度能量为 UUV 提供动力进行了全面的回顾,重点关注滑翔机和剖面浮标。基于相变材料 (PCM) 的 UUV 热梯度能量系统无法提供为自主传感系统提供动力所需的能量,因为这些系统的能量转换效率低。除了通过开发更高效的机电系统来降低能耗之外,增强 PCM 的热导率还可以通过提高 UUV 的发电率来帮助应对这一挑战。其他一些新兴技术,如热电发电机、形状记忆合金和小型热力循环系统,已显示出为 UUV 提供动力的潜力,但它们仍处于实验室测试或概念设计阶段。基于盐度梯度、反电渗析和压力延迟渗透的最先进发电技术在经济上仍然不适合大规模部署,主要是因为在恶劣的盐环境中运行所需的组件成本高昂。我们的可行性评估表明,现有的盐度梯度发电技术不能直接为公海中的 UUV 提供动力。
本文首次提出了一项实证研究,该研究表明在分析各种浓度的水溶液溶液的介电常数(介电常数)时考虑温度的重要性。介电性是研究人员研究的参数,作为无创测量葡萄糖而无需抽血的生物标志物。这项技术的开发将使个性化的医疗保健DI不可知论者可以监测和预防糖尿病。由于血液中的人类葡萄糖水平在每分少数几毫克的范围内有所不同,因此估计葡萄糖的这种较小变化将需要高度准确且可重复的传感技术。电磁(EM)波,特别是在微波炉和Terahertz频率范围内,在检测血浆电性能的变化方面已显示出与葡萄糖浓度相关时的变化。但是,重要的是要注意,尽管该技术表现出了承诺,但仍处于研发阶段。这里显示体温可以影响血糖测量的准确性。在各种TEM周期下使用不同的葡萄糖浓度溶液进行的实验,并研究了葡萄糖的复杂介电常数在从400 MHz到11 GHz的较大频率范围内进行了研究。热能的升高通常会导致水(如水)振动并旋转旋转偶极子对电场的比对,从而降低其介电性。分析表达的精度在实验上显示为99%。经验结果表明,对于葡萄糖水溶液,介电性随温度从16℃至37°C的升高而增加。这归因于水的极性和葡萄糖分子的极性,随着热能的增加而变得更加明显。基于实验结果,得出了精确的分析表达,以考虑水葡萄糖溶液的温度。研究结果应使基于电磁传感技术的准确非浸润性葡萄糖监测设备的设计设计。
淋巴细胞及其亚群,它们广泛参与免疫细胞的抗原识别,细胞粘附和信号转导,并且是一系列重要的生理和病理学过程的分子basis,例如内炎,免疫反应,肿瘤转移,肿瘤转移等[8]。CD3分子是多特异性抗体中最常用的免疫募集效应细胞位点。在多特异性抗体结构中,由TRION Research/Neovii Biotech机构开发的抗原抗原是Epcam/CD3,用于治疗恶性腹水和由Amger机构开发的Bline-tumomab靶向抗原,用于急性淋巴细胞细胞细胞细胞细胞细胞。由Transtarget/Barbara Ann Karmanos癌症研究所开发的抗CD3-ANTI-HER2激活的T细胞目前正在II期临床研究中,靶向抗原HER2/CD3期II期可用于乳腺癌。CD47分子称为整合素相关蛋白。在免疫检查点上抑制CD47可以有效防止肿瘤细胞通过巨噬细胞逃避吞噬作用[9]。目前,针对CD47/CD19和CD47/CD20的多特异性抗体的研究在杀死体内和体外杀死Tu mor方面取得了良好的结果。由CD16在人NK细胞上介导的肿瘤细胞的直接杀死过程取决于溶液受体的质量紧密结合。目前,与CD16相关的多特异性抗体药物研究是由AFFIMED Company开发的AFM-13,该公司目前正在针对CD30/ CD16的II期临床研究中。针对CD19/CD16,EGFRVIII/CD16和EGFRWT/CD16的抗体处于研发阶段。这三种抗体不仅适用于血液学肿瘤,而且还可以靶向一些固体肿瘤[10]。
Archer 正在继续前进 Archer Materials 正在继续推进其 12CQ 和 Biochip 的研发阶段,它的大多数同行也是如此。Archer Materials 的现金管理得很好,两年内没有筹集任何资金,截至 2024 年 3 月 31 日,银行账户中有 2000 万澳元。24 年度的一大亮点是成功制造了 Biochip 石墨烯场效应晶体管 (gFET) 设计,该设计通过由该公司在西班牙的代工合作伙伴 Graphenea 运营的 6 英寸整片晶圆完成。Graphenea 生产了 145 个芯片。这将有助于 Archer Materials 推进制造工艺,以大规模生产 gFET 芯片。2024 年 5 月中旬,我们亲眼目睹了其中的一些情况,参观了悉尼纳米科学中心研究和原型铸造厂 (RPF),Archer Materials 与其他公司共享该工厂以开发其技术。这将是本报告的重点。澳大利亚政府的量子赌注应会吸引更多投资 当一些投资者听到媒体报道政府正在投资 PsiQuantum 时,他们感到失望,他们不可避免地希望 Archer 自己获得投资。这是澳大利亚和昆士兰州政府与 PsiQuantum 合作对量子计算能力进行的一项更广泛的投资——它并不完全是一项股权发行交易。我们相信这笔交易将带来更多像 RPF 这样的设施,并可能带来更多来自成熟技术公司的投资,更广泛的澳大利亚量子计算生态系统将从这项投资中受益,进而受益于 Archer。
摘要 批判学者认为“没有大型科技公司就没有人工智能”。本研究深入探讨了亚马逊、微软和谷歌 (Alphabet) 等大型科技集团在“人工智能工业化”中扮演的重要作用。这一概念概括了人工智能技术从研发阶段转向跨不同行业部门的实际应用,从而产生了新的依赖关系和相关投资。我们使用“大型人工智能”一词来概括人工智能和大型科技公司的结构性融合,其特点是人工智能与这些大型科技公司的基础设施、资源和投资之间存在深刻的相互依赖。我们的研究采用“技术图表”方法,仔细研究了大型科技公司在人工智能领域的基础设施支持和投资,重点关注企业合作伙伴关系、收购和金融投资。此外,我们还对亚马逊、微软和谷歌提供的全部云平台产品和服务进行了详细研究。我们表明,人工智能不仅仅是一个抽象的概念,而是一个实际的技术堆栈,包括基础设施、模型、应用程序以及依赖该堆栈的应用程序和公司的生态系统。值得注意的是,这些科技巨头已将堆栈的所有三个组件无缝集成到他们的云产品中。此外,他们还开发了以行业为中心的解决方案和市场,旨在吸引第三方开发人员和企业,促进更广泛的人工智能生态系统的发展。这项分析强调了人工智能和云基础设施之间错综复杂的相互依赖关系,强调了云人工智能的行业特定方面。
独联体成员国与世界上大多数国家一样,提出了不断实现能源来源多样化的任务,以加强能源和环境安全,并履行《巴黎协定》规定的义务。 2022-2023 年碳氢化合物价格上涨为降低经济能源强度提供了额外动力,并使可再生能源技术更具竞争力。这些因素导致全球对可再生能源(RES)和绿色氢的需求加速增长。所有独联体成员国都面临着气候变化的负面影响,都是《巴黎协定》的缔约方,并正在实施气候政策措施。但其实施面临的一个重大障碍是能源资源使用产生的二氧化碳排放与经济增长之间的关系。这种依赖性是大多数发展中和快速增长经济体的特征,很难打破。增加可再生能源在能源平衡中的份额是必要但非充分条件。需要开发一种新的增长模式——向基于低碳能源系统的“绿色”经济、“生物经济”和“循环经济”转型。一个重要的工具是开发自然和气候项目中的碳单位市场,以减少产品(特别是碳密集型产品)的碳足迹。 2022–2023 年。独联体成员国在可再生资源利用、气候变化等领域合作显著加强。与此同时,尽管机制化机制和个别低碳能源项目已经运转,但该领域合作尚未得到充分发展。建立涵盖技术创造整个过程的合作极其重要,从科学研发阶段开始直至实施和转让。独联体成员国存在发电能力过剩,因此可以考虑生产低碳“橙色”氢气的可能性。将这一能源融入独联体经济,
疫苗发育在控制传染病方面是高度优先的。疫苗接种对健康的影响是巨大的;除了提高饮用水质量外,没有其他方法对降低死亡率和人口增长(Rodrigues and Plotkin)有如此重大影响。然而,尽管我们对宿主 - 病原体相互作用的了解以及疫苗设计中各种尖端技术的进步有所提高,但仍缺乏针对许多人类和动物疾病的有效疫苗。需要在较短的时期内设计和生成疫苗,以防止很难通过其他方式控制的新出现和重新出现的病原体对人类和动物福利至关重要。控制当前的SARS-COV-2大流行是一个很好的例子。灭活的整个病毒疫苗是针对SARS-COV-2开发和施用的第一个疫苗,并且仍被广泛使用(约占输送的总疫苗的50%),表明这种传统的疫苗开发方法的价值(1)。目前,化学灭活是杀死病原体进行疫苗制备的最常见方法。然而,在过去的十年中,使用辐射(γ-,X射线,电子束 - 辐照)被认为是疫苗发育的潜在有效替代方案。通过辐射灭活而在化学失活方面具有一些潜在的重要优势。本研究主题的汇编将引起人们对疫苗开发中辐射技术最新技术的关注。在第二篇评论论文中,Unger等。本集中出现的两个迷你评论给出了包括历史发展在内的技术的全面概述。尽管辐射技术仍主要是在研发阶段,但对该领域的兴趣越来越多,如Bhatia和Pillai的审查论文所示,提供了24种专利的代表性清单,这些专利是为人类和动物细菌,病毒,病毒和原生动物疾病创建辐照疫苗的24种专利列表。讨论了针对牲畜疾病的辐照疫苗的开发,并特别提及国际原子能局食品和农业核技术联合核技术中心的动物生产和健康部(APH)的倡议。在本文中,还提供了各种疫苗制剂中使用的辐射剂量的信息。这两篇文章都显示了电离背后的科学
Biased from the outset: The EU Commission's “working document” on new GM techniques fails to uphold environmental and consumer protection standards Critical response by NGOs and farmer and business associations to the Commission's document on new GMOs September 2021 Summary In April 2021 the health branch of the EU Commission (DG SANTE) published a “staff working document” calling the EU's genetically modified organism (GMO) regulations “不适合目的”。在文件中,委员会提出了建议,可能会导致一项提议,以免除某些用“新基因组技术”生产的作物工厂,例如根据法规的要求进行基因编辑。这样的放松管制可能意味着没有安全检查,消费者的转基因生物标签,可追溯性要求或市场后监控。我们,签署的非政府组织(NGOS),农民组织以及商业和贸易协会强烈反对委员会文件中的建议,理由是,对新的GM技术的放松管制会对人类和动物健康和环境构成不可接受的风险。放松管制还将禁止公民知道他们在吃什么,而农民不知道自己在播种。委员会的提议跨越了有关生物安全,信息透明度和消费者保护的红线。应该拒绝他们。如果出现问题,例如,如果新的转基因食品的消费者遭受过敏反应或有毒作用,或者如果对野生动植物产生意外影响 - 消除标签和可食用性要求将意味着无法确定原因。下面列出了我们对文档的异议和引起该文件的咨询。委员会的咨询是有偏见的:导致该文件的咨询过程从一开始就存在偏见,绝大多数投入(74%)来自农业转基因生物行业。委员会过于依赖该行业的无法验证的承诺:委员会声称,采用新的通用汽车技术设计的植物可能会促进可持续性目标。但是,该主张没有得到证实,并依赖于GMO开发人员和相关大厅的无法验证的承诺。根据委员会的消息来源,联合研究中心(JRC),在JRC对转基因生物开发人员调查中确定的绝大多数承诺的植物产品都处于研发阶段,这可能远非商业化或根本不可商业化。
新兴的机电一体化技术领域着重于开发和实施用于工业应用的先进自动化。因此,机电一体化包括高级领域,包括机器人技术,人工智能(AI)和网络安全。尽管对机电一体化专业知识的需求正在增长,但机电一体化的可用体验劳动力发展机会仍然有限。该项目将通过在线机电一体化教育门户网站(MEP),体验式机电一体化实践(MP)计划和机电一体化行业途径轮换来研究和开发教育材料和工具,并为项目参与者提供体验机会。MEP和MP模块专注于机器人技术,力学,电子/控制,网络安全和人工智能的五个机器人支柱。该项目利用密歇根州技术大学,西岸社区学院,戈吉比克社区学院,三个非营利组织以及九个地区行业合作者之间的合作伙伴关系。主要项目目标是通过体验式学习机会来改善跨学科的机电一体化培训;制定一个灵活而全面的计划,以促进多样化和包容性的STEM劳动力:并促进以机电卫星劳动力准备和安置为中心的项目合作伙伴之间的可持续合作。作为机电一体化教育门户网站的项目研究和开发的一部分,正在开发允许进行远程机器人操作和编程的遥控机器人工作电脑(TRW)。TRW由FANUC协作机器人,三个用于对用户实时反馈的摄像机和一个用于托管已开发软件的计算机服务器。客户端的界面将由虚拟教学吊坠组成,其中包含一个覆盖的真实教学吊坠的显示屏幕和两个显示窗口,显示了由安装在物理机器人工作表中的摄像机传递的不同角度的机器人。TRW将通过安全环境中的Internet从世界任何地方的用户远程访问机器人。在本文中,作者提供了TRW的研发阶段的详细信息。
1. 简介 有效载荷可以通过从地面发射的太空火箭送入轨道,但这并不是唯一可行的解决方案。例如,可以使用机载发射系统到达低地球轨道。[1,2] 中研究了空中发射的好处。这种解决方案可以成为大型航天发射综合体的一种有趣替代方案,特别是因为它可能有利于发射小型有效载荷。此外,对于那些没有自己的太空运输系统或正在寻找一种在发射场和系统机动性方面具有极大灵活性的解决方案的国家来说,拥有一套空中发射入轨系统至关重要。纳米和微型卫星(重量从 1 到 50 公斤)市场的出现使空气辅助火箭发射平台成为此类有效载荷的竞争性解决方案。这种类型的卫星不仅在航天工业巨头国家的财力范围内,而且在个别企业甚至公司的购买力范围内。市场分析显示,2020年约有200颗纳米和微型卫星被发射到不同的轨道。此外,甚至一些大学和研发中心也有兴趣将自己的小卫星发射到太空,以充当研究平台。充当辅助平台的飞机的载重量足以运载能够发射高达50公斤太空有效载荷的火箭。迄今为止,纳米和微型卫星已作为附加的补充有效载荷(所谓的“搭载”)随主要有效载荷发射。值得注意的是,这种系统在军事领域也有应用,例如作为反卫星武器或响应式空中发射。因此,时间和目标轨道取决于订购运输主要有效载荷的一方的要求。作战响应空间应用涉及快速设计和建造军用卫星以供其立即发射,这是另一个值得考虑的市场领域。目前,经典卫星的研发阶段持续 4 至 10 年(微型卫星为 1 - 4 年)。执行空中辅助发射操作需要 1-3 年,这意味着该时间与设计和建造卫星所需的时间相当。2007 年,美国成立了作战响应空间办公室 (ORSO),该机构的任务是建立一个小型卫星“战术”系统,能够提供广泛理解的“支持”武装部队。其另一项任务是