摘要:近年来可解释的AI(XAI)取得了长足的进步,提供了有价值的理论和技术来解释复杂的机器学习模型。然而,这些方法通常用于解释复杂数据集以进行科学发现,尤其是涉及高维度数据(例如基因表达谱)的数据集。这些数据集对于理解癌症生物学至关重要,需要新颖的方法才能完全释放XAI的潜力。在本演讲中,我将探讨将XAI应用于基因表达数据的实际挑战,并强调其潜力和局限性。我将提出创新的策略,以适应XAI技术以加速癌症药理学和癌症系统生物学中的数据驱动发现。讨论将阐明解决这些挑战的方式如何导致深刻的生物学见解和有影响力的临床意义。通过弥合先进的XAI原理和技术之间的差距以及现实世界生物医学数据集的需求,该演讲旨在激发AI和生物医学相交的更强大方法论的发展,为生物医学研究中创新的新时代铺平了道路。
这一宝贵的数据集为多项关键挑战提供了机会。其中一项挑战是了解人们在编码新记忆(例如视频内容的记忆)时大脑如何对信息进行优先排序。动物研究的著名理论和发现表明,巩固此类记忆涉及在睡眠和休息期间重播神经模式(参见 Liu 等人,2019 年;van der Meer 等人,2020 年);然而,几乎没有关于人类这些机制的直接证据。确认人类在睡眠期间的重播对于已知与睡眠障碍有关的精神健康障碍(例如焦虑和抑郁)具有重要意义。因此,这一挑战将使我们能够研究信息在睡眠期间存储和重新激活的基本机制。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
charité在预防和评估肥胖症中使用数据| TBAAI和心血管研究| TBA机器学习与心理健康| Heiner Stuke博士| RKI ZKI-PH 4 12:00支持卫生政策中证据的决定,并实践Dimitra Panteli博士|欧洲卫生系统和政策天文台12:30 Outlook and Closing评论12:40午餐和海报会议13:30研讨会结束
2022 年 10 月 14 日,瑞士苏黎世联邦理工学院,Josh Blumenstock 和 Daniel Björkegren 发表主题演讲
•NMIS风险评估的一般概述•关注水平考虑•可接受的计算•新方法方法•类似API的方法与非API类似于非API的•代谢物•体内量化研究•临床开发下的产品
关于研讨会气候变化是指温度,降水模式和地球上其他大气条件的长期变化。这是一个重要的全球关注点,影响生态系统,天气模式和人类生计。气候变化的主要驱动因素包括自然因素,例如火山喷发,太阳辐射和海洋循环和人为因素,包括温室气体排放,森林砍伐,工业化和土地利用变化。分析气候变化涉及评估其物理,化学和生物学对环境的影响。气候变化的关键指标包括全球温度升高,海平面上升,冰川静修,变化的降水模式以及极端天气事件,例如飓风,热浪和干旱。这些变化影响生物多样性,水资源,农业和公共卫生,对可持续发展构成了挑战。本研讨会将召集科学家,政策制定者,研究人员,环保主义者和学生,以交换知识并制定可行的策略以进行气候适应和缓解。在这种背景下,有一天关于“气候变化影响和极端天气事件的国家研讨会 - 气候变化研究中心(CCCR)(CCCR),环境生物技术学院,Bharathidasan University of Environment Biotechnology,Bharathidasan University,Tiruchirappalli,Tiruchirappalli,2025年3月26日。
本课程将向学生介绍更大的达拉斯环境,并以不同的方式研究城市和一个地区。主要目的是发展学生对大达拉斯人的人民,机构和地点的了解,并知道它们之间的关系。该课程将向学生介绍多种纪律观点,以及如何使用这些观点来发展对单个大都市地区的复杂而复杂的理解。在课程结束时,学生将展示至少有两种理解城市的纪律方法。通过每周的课堂讨论,书面作业,考试和小组项目,学生将证明他们的能力阅读,写作和仔细,批判性地讲话以及进行主要研究。
有兴趣参与人工智能领域的发展,SPBPU护送和第三届人工智能研讨会的计划的学生,教师,科学家,该领域将于2025年1月15日在Kapitsa Hall举行(ST。理工学院,Technopolis(Nick) div>的房屋29