量子计量领域有可能大幅提高从标准量子极限到海森堡极限的测量精度。这些技术依赖于创建纠缠量子态的能力,并通过干涉法利用它们进行高精度测量。可以采用各种不同的技术来利用各种纠缠态的计量应用 [ 1 – 5 ] 。创建这些在计量上有用的状态通常是一项艰巨的任务。一种有前途的方法是绝热态制备,其中系统从一个简单的哈密顿量开始,该哈密顿量具有易于生成的产物态作为其基态,然后通过缓慢改变外部参数绝热演化到复杂哈密顿量的纠缠基态。挑战在于,与相关的最小能隙相比,绝热态制备必须缓慢进行,以减少演化过程中不必要的绝热激发。对于热力学极限中间隙消失的系统,有限系统的最小间隙通常与系统大小成反比,这使得绝热态准备对于较大的系统尤其困难。当前的量子模拟器无法使系统演化足够长的时间来完全执行此过程,因为它们受到退相干和技术噪声的限制。这种演化时间短的限制不可避免地会产生非绝热激发,这种激发可能非常显著,并会严重影响目标纠缠态的保真度。挑战在于在长时间尺度上进入的退相干误差和在短时间尺度上进入的非绝热激发之间找到平衡。该问题的一个潜在解决方案是绝热的捷径——系统以非绝热方式演化,以便在演化结束时进入纠缠基态。这些技术减少了总状态准备时间,这使得它们在处理退相干效应时具有吸引力。最近,该领域出现了许多理论突破 [ 6 – 8 ] 。一种基于向汉密尔顿量添加反非绝热场的技术可以保证系统演化到正确的纠缠基态。它通过在汉密尔顿量中添加一个辅助项来实现这一点,该辅助项旨在精确抵消将要发生的激发,确保系统始终保持在瞬时基态。该项的强度