近年来,人们通过巧妙的路线/方法合成了分子内富勒烯,即将几种低质量分子(如 H2、HD、HF、H2O、CH4)封装在富勒烯笼内,这些方法涉及复杂的化学和物理过程,如被称为分子手术的多步有机合成程序。[1–7] 人们随后利用各种光谱技术对这种轻分子内富勒烯进行了研究,例如红外/远红外 (IR/FIR)、非弹性中子散射 (INS)、核磁共振 (NMR)、X 射线衍射,发现它们表现出独特和非常规的性质,因为捕获分子动力学具有高度量子性,特别是在低温实验条件下的证据。[3,8–16] 此外,其中一些物质也因潜在的长期应用而受到关注
免疫疗法已被证明是与转移性黑色素瘤作斗争的患者的福音,显着改善了其临床结合和整体生活质量。在动物模型和人类患者中都建立了肠道微生物组组成与免疫疗法的效率之间的引人注目的联系。然而,肠道微生物影响治疗结果的精确生物学机制知之甚少。使用来自黑色素瘤患者的680个粪便元基因组的鲁棒数据集,构建了元基因组组装基因组(MAGS)的详细目录,以探索肠道微生物组的组成和功能特性。我们的研究发现了明显的发现,从而加深了肠道微生物与黑色素瘤免疫疗法的效率之间的复杂关系。,我们发现了具有良好治疗结果的患者的特定元基因组学,其特征是MAGS的普遍存在具有总体代谢潜力和多糖利用率的促值,以及负责钴胺素和氨基酸产生的那些。此外,我们对以其免疫调节作用而闻名的短链脂肪酸的生物合成途径的研究表明,这些途径在特定的MAG中具有差异的丰富性。除其他外,依赖钴胺素的木材 - 乙酸合成的Ljungdahl途径与对黑色素瘤免疫疗法的反应直接相关。
摘要 目的 虽然确切的人类前体细胞尚未确定,但循环中的髓系前体细胞负责出生后破骨细胞 (OC) 的分化和骨骼健康。增强的破骨细胞生成导致类风湿性关节炎 (RA) 中的关节破坏,而肿瘤坏死因子 (TNF) 是一种众所周知的促破骨细胞生成因子。在此,我们研究了核因子 κ-Β 配体的受体激活剂 (RANK-L) 与 TNF 之间的相互作用,RANK-L 对髓系前体的融合和 OC 的正常发育必不可少,而 TNF 则指导来自人外周血的不同前 OC 群体的分化。方法 流式细胞术细胞分选和分析用于评估髓系群体分化为 OC 的潜力。转录组学、表观遗传分析、受体表达和抑制剂实验用于揭示 RANK-L 和 TNF 信号传导层次。结果 TNF 可作为 CD14 + 单核细胞 (MO) 分化为 OC 的关键稳态调节剂,通过抑制破骨细胞生成以有利于巨噬细胞发育。相反,一种以前未发现的 CD14 − CD16 − CD11c + 髓系前 OC 群体不受这种负调节。在健康的 CD14 + MO 中,TNF 通过 TNFR1-IKK β 依赖性途径驱动 RANK 启动子的表观遗传修饰并停止破骨细胞生成。在 RA 患者亚组中,CD14 + MO 表现出改变的表观遗传状态,导致 TNF 介导的 OC 稳态失调。结论这些发现从根本上重新定义了 RANK-L 和 TNF 之间的关系。此外,他们还鉴定出了一种新的人类循环非 MO OC 前体池,与 MO 不同,它们在表观遗传上经过预处理以忽略 TNF 介导的信号传导。在 RA 中,这种表观遗传预处理发生在 MO 区室中,从而导致该通路失败的病理后果。
fi g u r e 2在高山草原中评估的全范围植物和土壤特性的季节性动态。属性按最大季节进行分组:(a)春季; (b)夏天; (c)秋天。在灌木膨胀下,某些特性明显更高( + s)或较低(-s)。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。 出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。 对未量化的数据进行统计分析n = 8。 有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。AOA,氨氧化古细菌; AOB,氨氧化细菌; CBH,几核酸水解酶; GLC,β-葡萄糖酶; NAG,N-乙酰葡萄糖氨基酶; Per,过氧化物酶; Pho,磷酸酶;痘,苯酚氧化酶; URE,尿布; xyl,β-二基固醇酶。出于可视化的目的,将所有变量缩放为平均值为0,标准偏差为1。对未量化的数据进行统计分析n = 8。有关更多详细信息,包括实际均值和SE,精确的P和χ2值,请参见表S1 – S3。
具有低能量极化切换的半导体铁电材料为铁电场效应晶体管等下一代电子产品提供了平台。最近在过渡金属二硫属化物薄膜双层中发现的界面铁电性为将半导体铁电体的潜力与二维材料器件的设计灵活性相结合提供了机会。这里,在室温下用扫描隧道显微镜展示了对略微扭曲的 WS 2 双层中铁电畴的局部控制,并使用畴壁网络 (DWN) 的弦状模型了解它们观察到的可逆演化。确定了 DWN 演化的两种特征机制:(i) 由于单层在畴边界处相互滑动,部分螺旋位错的弹性弯曲将具有双堆叠的较小畴分开;(ii) 主畴壁合并为完美的螺旋位错,这些位错成为反转电场后恢复初始畴结构的种子。这些结果使得利用局部电场对原子级薄半导体铁电畴进行完全控制成为可能,这是实现其技术应用的关键一步。
迈克尔·E·斯托克斯(Michael E.科学,哥伦比亚大学,纽约市,纽约市,10027,美国2,美国2,哥伦比亚大学医学中心,纽约市纽约市,纽约市,10032年,美国3美国3哥伦比亚大学医学中心,纽约市哥伦比亚大学医学中心,10032,美国4蛋白质组学和蛋白质组学和蛋白质组学和大型晶体晶体学院,哥伦比亚郡医学中心。 Columbia University, New York City, NY 10027, USA 6 Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA 7 These authors contributed equally 8 Lead contact *Correspondence: ac2248@cumc.columbia.edu (A.C.), bstockwell@columbia.edu (B.R.S.)https://doi.org/10.1016/j.chembiol.2023.11.007
2005 年报道了一种基于量子相位估计 (QPE) 的算法,可在多项式时间内解决全配置相互作用 (full-CI),该算法可以在所使用的基组内给出变分最佳波函数,但在经典计算机上求解的计算成本随着系统规模的增加而呈指数增加。3 2014 年提出了一种可在嘈杂的中等规模量子 (NISQ) 设备 4 上执行的量子 - 经典混合算法,称为变分量子特征求解器 (VQE)。5,6 此后,出现了许多关于通过改进量子算法 7 – 21 来降低计算成本并提高速度的报道,并且已经记录了使用各种量子设备 22 – 30 的相关实验演示。尽管量子计算机上的量子化学计算理论 (QCC-on-QCs) 取得了快速进展,但有效处理开壳层电子结构的方法仍处于起步阶段。开壳层系统在化学中无处不在。例如,有机双自由基可用作分子自旋量子计算机的原型 31,32、动态核极化 (DNP) 中的极化剂 32,33、有机发光材料 34,35 等等。开壳层多核过渡金属配合物经常作为反应中心参与酶的合成。36,37 单分子磁体作为分子存储装置已被广泛研究。38 为了揭示它们的电子结构,复杂的从头算量子化学计算是强大而必要的工具。然而,在携带自旋-b 不成对电子的开壳层系统中,波
背景:疫苗接种是公共卫生中最显著的干预措施,是控制婴儿传染病的有效策略。目的:本研究旨在比较伊朗 2 至 6 个月大婴儿接种五联疫苗和 DPT 疫苗的不良事件。方法:这是一项分析性横断面研究,研究了 2013 年接种 DPT 疫苗和 2015 年接种五联疫苗的 2 至 6 个月大的健康婴儿是否经历过与这两种疫苗相关的不良事件。使用百分比、平均值、标准差和卡方检验来描述和分析数据(p < 0.05)。结果:结果显示,在伊朗各地接种这两种疫苗的婴儿中,分别记录了 10,464 起和 17,561 起与 DPT 疫苗和五联疫苗相关的不良事件。马赞德兰省、加兹温省和戈勒斯坦省报告的不良事件数量最多(分别为 15.74%、11.25% 和 9.12%)。此外,五联疫苗似乎比 DPT 有更多记录的不良事件,DPT 疫苗的高烧记录率最高(47.4%),五联疫苗的轻度局部并发症最高(31.68%)。疫苗种类与反应类型、不良事件分类和生产疫苗的国家之间存在显著关系(p < 0.05)。结论:与 DPT 疫苗相比,五联疫苗发生的高烧、呕吐、腹泻和烦躁等严重局部不良事件似乎较少。因此,在婴儿中用五联疫苗代替 DPT 疫苗似乎可以减少其中的不良事件。
原理:多发性骨髓瘤 (MM) 是一种骨髓浆细胞多灶性恶性肿瘤,其特征是缓解和复发的恶性循环,最终导致死亡。由于骨微环境 (BME) 和 MM 细胞 (MMC) 之间复杂的相互作用,该疾病大多无法治愈。在骨病的“恶性循环”中,MMC 对破骨细胞 (OC) 的异常激活会导致严重的骨溶解、促进免疫逃避并刺激 MMC 的生长。破坏这些癌症-基质相互作用将增强治疗反应。方法:为了打破这种循环,我们将载有非治疗剂量光敏剂二茂钛 (TC) 的纳米胶束 (NM) 正交靶向表达 VLA-4 (α 4β1、CD49d/CD29) 的 MMC (MM1.S) 和表达 α vβ3 (CD51/CD61) 的 OC。同时,全身施用非致死剂量的放射性药物 18 F-氟脱氧葡萄糖 ([ 18 F]FDG) 与 TC (放射性核素刺激疗法,RaST) 相互作用产生细胞毒性活性氧 (ROS)。在 MM1.S 细胞系以及异种移植和同种移植 MM 动物模型中表征了 RaST 的体外和体内作用。结果:我们的数据显示,RaST 诱导细胞脂质的非酶氢过氧化,最终导致线粒体功能障碍、DNA 碎片化和 MMC 的 caspase 依赖性凋亡,使用 VLA-4 亲和 TC-NMs。RaST 上调了 BAX、Bcl-2 和 p53 的表达,突出了通过 BAK 非依赖性途径诱导细胞凋亡。多铜氧化酶 F5 表达的增强(可抑制脂质氢过氧化和 Fenton 反应)不足以克服 RaST 诱导的不可逆功能扰乱 α,β-醛积累增加,这些醛会对 DNA 和蛋白质造成严重且持久的损害。在体内,VLA-4-TC-NM 或 α vβ3-TC-NMs RaST 均对免疫功能低下但免疫功能不正常的 MM 携带小鼠模型产生严重治疗效果。VLA-4-TC-NM 和 α vβ3-TC-NMs 联合治疗可协同抑制骨溶解、减轻肿瘤负担并防止两种 MM 体内模型中的快速复发。结论:通过同时靶向 MM 和骨细胞,联合 RaST 通过对骨癌恶性循环的多管齐下的作用抑制 MM 疾病进展。我们的工作没有采用标准的多药疗法,而是揭示了一种独特的光物理治疗模式,即使用无毒剂量的单一光敏药物正交地作用于癌症和骨细胞,然后通过放射性核素刺激产生 ROS 来抑制肿瘤进展并最大限度地减少免疫功能正常的小鼠和免疫功能低下的人类 MM 模型中的骨溶解。