通过破坏势能壁垒的对称性 Dae-Han Jung、Hee-Sung Han、Namkyu Kim、Ganghwi Kim、Suyeong Jeong、Sooseok Lee、
2005 年报道了一种基于量子相位估计 (QPE) 的算法,可在多项式时间内解决全配置相互作用 (full-CI),该算法可以在所使用的基组内给出变分最佳波函数,但在经典计算机上求解的计算成本随着系统规模的增加而呈指数增加。3 2014 年提出了一种可在嘈杂的中等规模量子 (NISQ) 设备 4 上执行的量子 - 经典混合算法,称为变分量子特征求解器 (VQE)。5,6 此后,出现了许多关于通过改进量子算法 7 – 21 来降低计算成本并提高速度的报道,并且已经记录了使用各种量子设备 22 – 30 的相关实验演示。尽管量子计算机上的量子化学计算理论 (QCC-on-QCs) 取得了快速进展,但有效处理开壳层电子结构的方法仍处于起步阶段。开壳层系统在化学中无处不在。例如,有机双自由基可用作分子自旋量子计算机的原型 31,32、动态核极化 (DNP) 中的极化剂 32,33、有机发光材料 34,35 等等。开壳层多核过渡金属配合物经常作为反应中心参与酶的合成。36,37 单分子磁体作为分子存储装置已被广泛研究。38 为了揭示它们的电子结构,复杂的从头算量子化学计算是强大而必要的工具。然而,在携带自旋-b 不成对电子的开壳层系统中,波
在本文中,我们研究了湍流环境下的对称性破缺。我们用两个例子展示了从对称状态到对称性破缺状态的转变:(1)随着流体层厚度的变化,二维流动向三维流动的转变;(2)随着磁雷诺数的变化,薄层流动中的发电机不稳定性。我们表明,这些例子具有相似的临界指数,但与平均场预测不同。临界行为可以与波动的乘法性质相关联,并且可以使用随机界面的统计特性结果在一定限度内进行预测。我们的结果表明,可能存在一类受乘法噪声控制的新型非平衡相变。
摘要动物内脏器官的左右 (LR) 不对称是在胚胎发育过程中通过逐步过程建立起来的。虽然有些步骤是保留的,但动物之间采用不同的策略来启动身体对称性的破坏。在斑马鱼 (硬骨鱼类)、非洲爪蟾 (两栖动物) 和小鼠 (哺乳动物) 中,对称性破坏是由 LR 组织器处的定向流体流动引起的,这种流体流动由运动纤毛产生并被机械反应细胞感知。相比之下,鸟类和爬行动物不依赖纤毛驱动的流体流动。无脊椎动物(如蜗牛和果蝇)采用另一种不同的机制,其中对称性破坏过程由肌球蛋白和肌动蛋白分子相互作用下游获得的细胞手性支撑。在这里,我们强调了肌动球蛋白相互作用和平面细胞极性是动物之间多种 LR 对称性破坏机制的汇聚切入点。
分子过程的相干控制源于通向同一最终状态的多种途径 1、2 之间的干涉,通常是通过激光照射引起的。最近的理论研究表明,类似的过程可以出现在经典力学的某些场景中 3、4,并且这种控制可以在经典极限下持续存在 5。基于非线性响应和通过海森堡表示观察干涉的考虑 6、7 表明,当控制在经典极限下存活时,它之所以如此,是因为对量子动力学有贡献的干涉项是由外部驱动的,即与外部激光场的振幅成比例。从这个意义上说,量子干涉贡献在质上与双缝实验等中的贡献不同。负责量子控制的量子干涉现象存在非零经典极限的可能性很大,需要仔细探索。在本文中,我们通过计算研究了在预计可通过实验实现的拟议光晶格场景中接近经典控制极限的方法。该设计允许人们探索控制作为有效的 → 0 以及退相干对量子控制的比较影响。下面的计算结果还强调了经典规则动力学与混沌动力学领域的量子响应差异。作为一种特殊的控制场景,我们关注对称性破坏,其中空间对称系统被具有频率分量和 2 的激光场照射。这样的场产生相位可控的净偶极子或电流,而不会在电位中引入偏置(例如,参见参考文献 1、3、5、8-10)。我们提出的系统是一个移动或振动的一维光学晶格 11,12,如下图所示,通过规范变换,可以将其视为与空间均匀电场相互作用的静止空间对称周期势。我们考虑了 → 0 极限以及退相干的影响,后者