【案例一:人类基因组计划】1990年前后,美国 破译人类基因组不仅会对研究人员和医疗实践产生影响,而且会对每个人和整个社会产生影响。 (保护遗传信息=个人信息、防止基于遗传信息的歧视等)因此,不仅研究人员、医生、患者,而且更广泛意义上的社会也有必要讨论在何种程度上才是“可以接受的”。
替代剪接已成为时空控制发育的基本机制。更好地了解这种机制的调节,不仅具有阐明基本生物学原理的潜力,而且还具有破译与正常剪接网络不正当调节的疾病有关的病理机制。在这里,我们利用了人类多能干细胞在人类肌发生过程中破译肌肉闪烁(MBNL)蛋白的作用,这是一个组织特异性剪接调节剂,其功能丧失与肌动症1型1型(DM1)相关,是一种遗传性神经肌肉肌肉疾病。多亏了CRISPR/CAS9技术,我们产生了在MBNL蛋白中耗尽的人类诱导的多能干细胞(HIPSC),并评估了它们损失对骨骼肌细胞产生的后果。我们的结果表明MBNL蛋白需要晚期肌源性成熟。此外,MBNL1和MBNL2的丧失概括了在HIPSC衍生的骨骼肌细胞中观察到的DM1的主要特征。比较转录组分析还揭示了由这些蛋白质调节的肌肉相关过程,这些过程通常在DM1中被误导。一起,我们的研究揭示了人类肌发生中MBNL蛋白的时间需求,并应促进能够应对这些MBNL蛋白功能丧失的新的治疗策略。
Susana Minguet是一位生物化学家,她在西班牙和德国之间发展了科学生涯,他热衷于了解免疫系统。受到Hieronymus Bosch的“尘世花园”和免疫互动的复杂性之间的相似之处的启发,她致力于破译这种看似混乱的系统。她的研究旨在利用这一知识来工程师新颖的免疫疗法。作为一位有成就的科学家和导师,Susana致力于培训下一代国际免疫学研究人员。
CRG/UPF 流式细胞术部门开发了一种高分辨率方法来分离单个病毒颗粒并研究其基因组。此应用允许识别不同样本或生态系统中新存在的病毒,有助于破译病毒圈,这是全球微生物组的重要组成部分。凭借这一革命性的发展,我们将流式细胞术部门定位为单病毒基因组学研究病毒分选领域的全球参考,我们接收并吸引了来自世界各地的研究人员。
▶每个用户生成一对开关,用于消息传递和解密消息。▶每个用户将两个键之一放在松树注册或其他可访问的文件中。这是松钥匙。保存的保存是私人的。用户可能具有其他用途的Pi -pi-掺杂剂的钥匙。▶如果鲍勃想向爱丽丝发送私人消息,他会使用爱丽丝的欺骗钥匙来理解该消息。▶当爱丽丝收到信息时,她使用私钥破译了她。
抽象的生物学入侵可能会给管理带来重大的经济损失和费用,以及伤害生物多样性,生态系统服务和人类福祉。对入侵的经济成本进行全面评估是对侵入性外星物种有效和可持续管理的具有挑战性但必不可少的先决条件。的确,这些成本被证明是固有的异质和复杂的,可以确定,大量知识差距阻止了对其性质和分布的充分理解。因此,开发仍失误的全球,评估和破译入侵成本的标准框架对于确定有效的管理方法和优化立法至关重要。Invacost数据库的最新出现是与全球生物入侵相关的经济成本的首次全面和协调的汇编 - 为调查这些复杂而多样化的成本以不同尺度的方式提供了独特的机会。当组合各种经验和专业知识时,此类数据集提供的见解可能是最大的。为此,2019年11月12日至15日在法国(法国)附近举行了国际和多学科研讨会,根据Invacost中可用的数据发表了几篇项目论文。在这里,我们强调了这项创新研究是如何源于入侵科学迈出的重要一步的。我们共同确定了五个核心研究机会,这些机会可能有助于解决:(i)破译现有入侵成本如何实际分布在人类中
例如,要研究基因在疾病模型中的作用,您可以构建由基因的各种功能域或具有缺失域和靶向突变的变体组成的质粒文库。以这种方式,您可以破译该基因的生物学作用,基因的功能结构域以及与该基因功能相关的关键氨基酸残基。此外,您可以根据正在从事的不同项目以及用于制备质粒DNA的过程(研究与临床等级材料或简单的DNA Prep与哺乳动物细胞的无内毒素质粒准备)创建质粒文库。
大脑中的淀粉样蛋白沉积与许多神经退行性疾病有关。 因此,淀粉样蛋白的形成和分解是神经变性的关键过程,包括淀粉样蛋白的细胞间传播。 然而,由于缺乏适当的技术和实验系统,淀粉样蛋白分解的分子机制已被鲜为人知。 为了解决淀粉样生物学中的这个长期存在的问题,我们的目标是通过开发新的生物物理方法和侵入性较小的体内成像技术来破译淀粉样蛋白分解过程。 此外,我们将开发出新的技术,用于在神经退行性疾病的细胞和小鼠模型中选择性分解和降解。 这些研究将为治疗发展带来重要意义。大脑中的淀粉样蛋白沉积与许多神经退行性疾病有关。因此,淀粉样蛋白的形成和分解是神经变性的关键过程,包括淀粉样蛋白的细胞间传播。然而,由于缺乏适当的技术和实验系统,淀粉样蛋白分解的分子机制已被鲜为人知。为了解决淀粉样生物学中的这个长期存在的问题,我们的目标是通过开发新的生物物理方法和侵入性较小的体内成像技术来破译淀粉样蛋白分解过程。此外,我们将开发出新的技术,用于在神经退行性疾病的细胞和小鼠模型中选择性分解和降解。这些研究将为治疗发展带来重要意义。