参量振子的量子动力学越来越受到理论和实验界的关注 [1-16]。在一定程度上,这种兴趣来自于参量振子的新应用,特别是在量子信息领域的应用。在更广泛的背景下,此类振子为研究远离热平衡的量子动力学和揭示其迄今未知的方面提供了一个多功能平台,隧穿新特征和新的集体现象就是例子。动力学特征之一是多态量子系统中详细平衡的出现和特征,这也是本文的动机之一。在很大程度上,参量振子的重要性在于其对称性。此类振子是具有周期性调制参数(如特征频率)的振动系统,其振动频率为调制频率 ω p 的一半。经典上,振动态具有相等的振幅和相反的相位 [17],这是周期倍增的一个基本例子。量子力学上,振动态可被认为是符号相反的广义相干态 [18]。弗洛凯本征态是频率为 ω p / 2 的振动态的对称和反对称组合。一般来说,在量子信息中使用参量振子需要进行破坏其对称性的操作,参见文献 [19]。对称性破坏可以通过在频率为 ω p / 2 处施加额外的力来实现。从经典角度来看,这种力的作用可以从图 1(a) 中理解。由于振动态具有相反的相位,因此力可以与两个状态中的其中一个同相,从而增加其
空手道示范 / 空手道示范 Amefurashi 四重奏 / Amefurashi 四重奏 爵士乐 / 爵士东京凯尔特人 / 东京凯尔特人 爱尔兰音乐 / 爱尔兰音乐 Zabutonz / Zabutonz
新年有更多的极端。1月初,维多利亚州中部部分地区的纪录破雨给农村社区带来了又一轮洪水。向北,季风的迟到到达了该国的热带地区,其中包括仍然从Cyclone Jasper湿透的地区。西澳大利亚州继续烘烤,皮尔巴拉(Pilbara)的温度记录损失,珀斯周围的房屋本赛季第三次受到大火的威胁。Kalgoorlie位于珀斯东北600公里处,在雷暴击倒电力基础设施后,留下了极端的温度。随着热量向东蔓延,遥远的Birdsville打破了昆士兰州有史以来最热门的一天的记录,并且在1月26日的公共假期中,包括在悉尼和布里斯班,在东海岸的数百万个艰难的湿度和较高的湿度意味着艰难的条件。
d. 雨水渠(Enviroscape 行动:使用可可/水“泥浆”瓶,将一些混合物喷入雨水渠管道(靠近房屋),并观察混合物从靠近水体的管道另一端流出。)解释雨水渠位于街区和所有街道的路缘上,旨在让雨水从人行道上流下。人们经常将东西直接倒入雨水渠(例如油漆、机油、家用化学品等)。所有雨水渠都直接通向水体,而无需先进行处理。我们永远不应该将任何东西倒入雨水渠。它们只设计用于雨水。e. 动物粪便/排泄物(Enviroscape 行动:使用可可/水“泥浆”瓶,按照讨论的方式喷洒在这些区域。)
分子过程的相干控制源于通向同一最终状态的多种途径 1、2 之间的干涉,通常是通过激光照射引起的。最近的理论研究表明,类似的过程可以出现在经典力学的某些场景中 3、4,并且这种控制可以在经典极限下持续存在 5。基于非线性响应和通过海森堡表示观察干涉的考虑 6、7 表明,当控制在经典极限下存活时,它之所以如此,是因为对量子动力学有贡献的干涉项是由外部驱动的,即与外部激光场的振幅成比例。从这个意义上说,量子干涉贡献在质上与双缝实验等中的贡献不同。负责量子控制的量子干涉现象存在非零经典极限的可能性很大,需要仔细探索。在本文中,我们通过计算研究了在预计可通过实验实现的拟议光晶格场景中接近经典控制极限的方法。该设计允许人们探索控制作为有效的 → 0 以及退相干对量子控制的比较影响。下面的计算结果还强调了经典规则动力学与混沌动力学领域的量子响应差异。作为一种特殊的控制场景,我们关注对称性破坏,其中空间对称系统被具有频率分量和 2 的激光场照射。这样的场产生相位可控的净偶极子或电流,而不会在电位中引入偏置(例如,参见参考文献 1、3、5、8-10)。我们提出的系统是一个移动或振动的一维光学晶格 11,12,如下图所示,通过规范变换,可以将其视为与空间均匀电场相互作用的静止空间对称周期势。我们考虑了 → 0 极限以及退相干的影响,后者
(第三世界网络)A。引言在谈判之后超过二十年后,世界知识产权组织(WIPO)的成员国即将完成旨在保护遗传资源(GR)和相关传统知识(ATK)的国际法律文书。根据基本建议的仪器目标是:(a)提高专利系统在与遗传资源相关的遗传资源和传统知识方面的功效,透明度和质量,以及(b)以防止专利对与遗传资源相关的遗传资源和传统知识的新颖性或创造性的发明错误地授予专利。这些目标基本上是通过使专利申请人宣布原籍国或GR的来源或原籍国或ATK来源的必不可少的。根据该工具的第3条,专利申请人不必根据GR或ATK对所有类型的专利申请进行强制性披露。对于基于GR的专利申请,仅在GR的背景下,披露才能以物理形式进行。这意味着使用遗传材料的数字序列信息基于GR的专利申请不必披露。此外,在专利申请中提及GR或ATK并不会触发披露。本政策简介提供了一些基于GR的专利申请的示例,这些申请成功地避免了强制性披露,从而突出了当前系统中的漏洞。披露只有“在专利申请中声称的发明是基本/基于遗传资源直接的,”这范围缩小了触发器的范围,并且是一个重要的关注领域,因为它通过促进大量专利申请的逃避披露要求,严重破坏了披露要求的有效性。通过介绍这些示例,政策摘要强调了对更广泛和更具包容性披露触发器的需求。此类措施将确保所有相关的专利申请均受到相同水平的审查和透明度,从而防止滥用GR和ATK。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
草豌豆(lathyrus sativus L.)由于其有利的农艺特征,包括一种强大的根系,它深入渗透到土壤中,及其针对各种生物和非生物胁迫的弹性,这是可持续农业的绝佳选择。在这项研究中,在“ Gachsaran”,“ Mehran”,“ Kuhdasht”和“ Shirvan-Chardavol”地点的“ Gachsaran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”,“ Mehran”的雨水基因型的干燥产量和种子产量连续三年连续三年评估。使用随机完整的块设计进行了实验现场试验,并将每个实验设置复制三次。描述性统计量显示出4.030(吨/ha)和1.530(吨/ha)的平均值,表型系数分别为54.77和61.56,用于干燥的产量和种子产量。地理,气候和缘变量对产量测量的投影描述了四个研究环境之间的显着差异。高程对Mehran位置的干物质和种子产量产生更大的影响。降雨和相对湿度的气候因素分别在“ Gachsaran”和“ Shirvan-Chardavol”中起着重要作用。对于种子产量,与温度相关的属性在“ Mehran”位置更为重要。观察到低宽义的遗传力,基因型 - 环境相互作用的R 2显示了GEI的干燥产量(0.126)和种子产量(0.223)。基于脉冲的稳定性指数分别显示G10和G13是种子产量和干燥物产量的优质基因型。AMMI1和AMMI2都可以识别出其他基因型的不稳定基因型,并且AMMI都将基因型G10和G3识别为高产物且稳定的基因型。使用GGE Biplot鉴定出三个和两个大环境,以进行干燥的产量和种子产量。对于被识别的巨型环境,G1,G13和G2,以及种子收益的大型环境,可以引入G10和G15。“ Mehran”和“ Gachsaran”从研究的位置出来,考虑到干燥的产量和种子产量,并且为了进一步的GE相互作用研究,最好在这些位置建立适应性试验。该研究得出结论,考虑到环境因素的影响,为了促进雨水供应区域的可持续农业,培养已鉴定的草豌豆基因型的培养具有希望。