在支持所谓的表面晶格共振(SLR)的光学元面积中。5,10后者提供了在大面积上易于制造的优势,并且可能在集成光子学中使用。与原子的气体(BEC的原始平台)相反,11个激子北极星的寿命很短。这些短寿命限制了基态的EP密度的堆积,从而导致凝结阈值增加。因此,EP凝结需要强大的激光系统来产生足够高的激子并达到阈值,这使得Polariton激光不适合大多数应用。在本文中,我们通过显着降低由硅(SI)跨表面形成的全电腔中的损耗来证明较低的阈值EP构度,从而增加了EP寿命。最近的努力成功地通过取代支持MIE-SLR的低损坏介电元表面的等离子介电元表面来减少凝结阈值。12由于SLR的高Q因子(400 - 700),部分原因是材料损失的减少,凝结阈值显着降低。在这里,我们通过
I在中国生产多达90%的多元硅元素 - 在欧洲和东南亚的每个人中生产了3%,在美国生产了百分之二。铸锭和晶状体的产生更加集中。中国在2023年的市场份额为96%。最终生产太阳能模块也集中在中国:2023年,中国制造了81%的基于硅的太阳能模块,东南亚的7%,印度5%,欧洲和美国各有2%。除了诸如强大的政府支持之类的因素外,还通过大型国内市场进行技术创新和生产扩展,中国多硅和太阳能产品的低价格也可以归因于相对较低的能源和劳动力成本。相比之下,原材料石英的成本扮演了较小的角色(Wirth,2024)。
摘要:光伏 (PV) 电池非常昂贵,因为硅元素并不便宜。通常,光伏电池最好以最高效率使用。因此,光伏电站强调从光伏电池中提取最大功率。当无惯性光伏电站大量集成到电网中时,在负载扰动下保持系统稳定性的问题非常困难。针对这一问题,控制拓扑是一种利用系统频率偏差作为控制器反馈的方法,使光伏电池能够保持系统稳定性。为了实现这一点,光伏电池在最大功率点跟踪 (MPPT) 下运行。这允许光伏电池在伪最大功率点跟踪 (PMPPT) 下运行,从而可以在不使用电池进行存储的情况下以备用功率容量运行光伏电池。控制策略已在光伏系统的两级功率转换模型上实施。仿真结果表明,与 MPPT 技术相比,所提出的控制 PMPPT 拓扑在频率调节能力方面更为有效。
摘要;阿伏伽德罗常数与质量单位和各种基本物理和电常数有关,是精确测量分子质量的必要条件。由于半导体技术的最新成功,硅元素因其晶体中近乎完美的原子结构而成为精确测量的通用参考材料的可能候选者。使用硅晶体确定阿伏伽德罗常数的项目是世界标准组织研究的主题,具有历史意义。国家医学研究实验室的团队刚刚开始使用 1 千克完美硅球的长期项目的最后阶段。它使用光学干涉仪测量球体的直径,并使用国家千克标准测量其质量,从而得到球体的宏观密度。它还测量了由相同硅锭制成的 X 射线干涉仪的晶格间距。后者将与与比利时 CBNM. Geel 合作确定的平均原子质量相结合,得出微观密度。这两个密度之间的等效性提供了阿伏伽德罗常数。目前声称的测量精度为体积 O.3ppm、质量 O.05ppm、晶格间距 Ippm。该项目对相应测量的目标精度将提供总不确定度小于 0.3ppm 的阿伏伽德罗常数。 lut 修订于
纳米级的光 - 物质相互作用的精确控制位于纳米光子学的核心。但是,由于相应的电磁近场通常限制在传统光学显微镜分辨率以下的体积之内,因此在此长度尺度上进行的实验检查是具有挑战性的。在半导体纳米型电磁场中进一步限制在各个亚波长谐振器的范围内,从而限制了这些结构中关键光 - 物质相互作用的访问。在这项工作中,我们证明了光电子发射显微镜(PEEM)可用于分辨近场光谱的极化以及受损坏对称性硅元素支撑的电磁共振的成像。我们发现,通过原位钾表面层启用的光发射结果与可见和近红外波长之间的全波模拟和远场反射测量一致。此外,我们发现了跨场阵列边缘附近的集体共振的偏振相关演变,利用了PEEM的远场激发和全场成像。在这里,我们推断出八个谐振器或更多之间的耦合建立了此元图的集体激发。总而言之,我们证明了高光谱的高光谱成像和PEEM的远场照明可以利用半导体纳米光子结构中的集体,非本地,光学共振的计量学。
卵子研究杂志。20,编号1,1月至2024年2月,第1页。 75-84 GAAS 1-X P X /SI 1-Y GE Y /GE三重连接太阳能电池的模拟和优化A. < /div>B. Azzououm B,A。Aissat A,B,C *,J。P. Vilcot C A艾哈迈德·德拉亚(Ahmed Draya),阿德拉尔(Adrar),阿尔及利亚B技术学院,Blida.1。Poincare Avenue,60069,59652 ASCQ的Villeneuve,法国本文着重研究和模拟GAAS 1-X P X /SI 1-Y GE Y /GE Y /GE三连接太阳能电池结构。首先,已经研究了与SIGE层相关的应变和带隙能。最佳锗浓度为0.88,应变约0.45%。然后,对上层GAAS 1-X P X /Si 0.12 GE 0.88的应变和带隙能的磷光浓度效应进行了优化。在室温下,最佳输出参数达到J SC = 34.41ma/cm 2,V OC = 1.27V,FF = 88.42%,η= 38.45%,吸收厚度为4.5µm,x = 0.47,菌株的菌株不超过1.5%。这项研究使我们能够设计高效,低成本的3J太阳能电池。(2023年10月23日收到; 2024年1月13日接受)关键字:半导体,效率,三连接,太阳能电池,光伏1.引言提高太阳能电池的效率会导致瓦特峰成本的降低[1]。在提供提高效率的技术中,我们发现了多期太阳能电池。但是,这些配置的制造成本仍然昂贵。后者基于一组具有不同带隙能的半导体材料的堆叠,该布置旨在吸收太阳光谱的最大值[2]。实际上,基于III-V化合物材料的多期太阳能电池提高了效率,并且似乎是光伏应用的未来。越来越多,它们已成为最前瞻性的太阳能技术[3,4]。降低成本所采用的技术之一是使用硅底物。因此,单层生长的GAASP/SI细胞可能是为空间应用提供低成本和高效率太阳能的合适候选者。,尽管在实验中众所周知,由于晶格不匹配高和热膨胀系数的巨大差异,很难用硅生长III-V材料[5-8] [5-8]。一种有希望的方法来克服这些限制并提高IIII-V 3J 3J太阳能细胞的效率,而不是使用Dermanium元素,而不是使用底层硅元素。锗的特征是直接带隙能在300K时为0.66 eV,因此吸收边缘比Si陡峭,SI陡峭,太阳辐照度光谱和低成本材料的光谱重叠更大。此外,锗元素可以与晶格匹配与III-V材料一起生长。这种优势使其成为吸收低能光子的有前途的材料[9,10]。由于这些最后的原因,在目前的工作中,锗被用作底部细胞。Fadaly等。此外,如[12]中报道,详细阐述了实验结构GAA 0.79 p 0.21 /si 0.18 ge 0.82双连接太阳能电池。将SIGE作为IIII-V顶部太阳能电池和底部电池之间的缓冲层的整合可以减少III-V核的位错界面,并提供高质量的底部太阳能电池。[11]证明了Si 1-ge Y合金的计算寿命接近III – V组半导体的寿命,因为从理论上讲,它们可以结合直接的带隙,波长态度和强烈的光学转变[11-13]。为了增强其表演的目标,三连接是 *通讯作者:sakre23@yahoo.fr https://doi.org/10.15251/jor.2024.201.75