本文所包含的信息和建议是基于我们的研究,被认为是准确的,但没有明示或暗示的保修,不适用或应该推断。Henkel建议购买者/用户应测试产品,以确定预期用途的可接受质量和适用性。应在模拟或实际最终使用条件下测试所有粘合剂/密封剂应用,以确保粘合剂/密封剂符合或超过所有必需的项目规格。由于装配条件可能对粘合剂/密封剂性能至关重要,因此还建议对在模拟或实际生产条件下组装的样品进行测试。本文所包含的任何内容应被解释为暗示任何相关专利的不存在,或者构成允许,诱因或建议,以实行任何专利涵盖的任何发明,而没有专利所有人的授权。
LRQA Group Limited,其分支机构和子公司及其各自的官员,雇员或代理人在本条款中单独和集体称为“ LRQA”。lrqa不承担任何责任,也不应对任何人的损失,损害或费用依靠本文件或提供的任何损失,损害或费用,除非该人已与相关的LRQA实体签订合同,以提供此信息或建议,在这种情况下,任何责任是根据该合同的条款和条件专有的。发行者:Bikenhill Lane,Bikenhill Lane,Birmingham B37 7ES,英国
这家德国初创公司是一家为航天、国防、能源和相关行业提供先进金属增材制造服务的供应商。公司专注于加工铌合金 (C103)、镍合金 (In718)、钛合金 (Ti64、Ti CP1)、铝合金 (A6061、AlSi10Mg)、难熔金属 (钽、钨) 和不锈钢 (SS316L)。该公司在创新合金工艺开发方面拥有丰富的专业知识,并担任多种应用的开发合作伙伴和产品设计师。
摘要。使用Magnetron-ION溅射,将一层金属钼1–2μm厚的金属钼沉积在环境温度下惰性氩气的大气中,该硅通过Czochralski方法生长的硅单晶表面。根据实验的结果,纯Mo层厚度为2μm,通过磁控蛋白的反应性溅射从高度纯的金属钼靶中沉积到冷硅晶片底物上,厚度为1.5 mm。仅在严格定义的钼金属沉积速率对应于体积中给定的巨质压力的情况下,它们的电导率和透明度也很高。溅射目标是直径为40 mm的磁盘,厚度为3-4 mm。产品处理的技术周期包括目标清洁的阶段。在不添加氧气的情况下将金属MO靶标溅射在纯氩AR中,可以促进具有非常好的电导率的不透明金属膜的形成。X射线衍射分析具有Mo金属涂层表面的硅单晶体显示了Moleybdenum-Silicon系统中的MO3SI和MOSI.65的化合物。硅硅硅酸盐被发现在温度范围1850÷1900°C的温度范围内经历同类肌转化,而低温品种 -MOSI2具有四方结构。 -MOSI2的高温形式具有六边形结构。使用原子扫描显微镜进行研究的结果表明,硅原子的链与MO原子连接,形成沿平行X和Y轴的MO结构的棱镜形成的锯齿形。
摘要:2- µm波段已被认为是下一代低损失,低延迟光学通信的潜在电信窗口。热光(TO)调节器和开关,它们是大规模集成光子电路中必不可少的构件,其性能直接影响芯片光子系统的能耗和重新配置时间。基于2 µm波带的金属加热器调制之前,响应时间缓慢和高功耗。在本文中,展示了在2- µm波段的工作,高性能的热马赫德干涉仪和环谐振器调节器。By embedding a doped silicon (p ++ -p-p ++ ) junction into the waveguide, our devices reached a record modulation efficiency of 0.17 nm/mW for Mach–Zehnder interferometer based modulator and its rise/fall time was 3.49 µ s/3.46 µ s which has been the fastest response time reported in a 2- µ m-waveband TO devices so far.对于基于环的谐振器调节器,在2- µm的设备中,在2- µm中的最低Pπ功率为3.33 mW。
自聚集胶体可用于制备材料,我们研究了胶体水炭分散颗粒中水分蒸发后形成的长棒状聚集体。单分散水炭颗粒(100-200 纳米)由葡萄糖热液碳化合成,并通过透析纯化。在合成过程中,它们形成胶体分散体,在中高 pH 值和低离子强度下静电稳定。水分蒸发后,在中等 pH 条件下,分散体会形成宏观上较大的棒状物。这些棒状物在固-水界面处形成,与干燥方向正交。热解使棒状物具有高度多孔性,但不会对它们的形状产生任何影响。将 Cu-Si 合金反应性地渗入原位热解水炭和形成的三铜硅化物 (Cu 3 Si)-碳化硅 (SiC)/碳复合材料中。在此过程中,Si 原子与 C 原子发生反应,进而导致合金润湿并进一步与碳发生反应。在反应过程中,底层碳模板的形状保持不变,随后将形成的复合材料制剂煅烧成 Cu 3 Si-SiC 基碳基胶体颗粒棒状组件的复制品。使用透射和扫描电子显微镜以及 X 射线衍射研究了所形成固体的形状、成分和结构。从胶体科学的角度,可以进一步研究将合金反应渗透到自聚集和碳基固体中制备的材料,以及探索性地使用由真实生物质制备的水炭,探索与反应渗透有关的组成空间,以及材料在催化中的应用。2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
UL 2824测试符合ASTM D6329的要求,是UL年度GreenGuard认证计划的一部分,该计划认可了在室内空气质量方面具有出色性能的产品。该测试是在Dupont™Tedlar™壁橱产品上进行的,作为年度认证的一部分。墙壁由透明的Tedlar®PVF膜组成,使用粘合剂层压到装饰性PVC底物。将材料放入无菌的培养皿中,将已知浓度的brevi-compactum接种,并在25°C下以95%的湿度放入环境室中三周。正容易受到真菌生长的阳性对照样品,并平行运行以验证微生物的活性。在测试的开头和结束时计数菌落形成单元的数量(CFU),并根据表2所示的标准提供了评级。dupont™Tedlar™壁挂式墙面测试后达到了最高的评分,表明它对霉菌的生长具有很高的耐药性。用于计算此评级的菌落形成单元的数量在表3中显示了墙壁和对照材料的数量。
摘要:近年来,硅 (Si) 基肖特基结光电极在光电化学 (PEC) 水分解中引起了广泛关注。要实现高效的 Si 基肖特基结光电极,关键挑战是使光电极不仅具有较高的肖特基势垒高度 (SBH) 以得到高光电压,而且还要确保高效的电荷传输。在本文中,我们提出并展示了一种通过金属硅化结合掺杂剂偏析 (DS) 来制造高性能 NiSi/n-Si 肖特基结光阳极的策略。金属硅化产生的光阳极具有高质量的 NiSi/Si 界面而没有无序的 SiO 2 层,从而确保了高效的电荷传输,从而使光阳极获得了 33 mA cm − 2 的高饱和光电流密度。随后的 DS 通过在 NiSi/n-Si 界面引入电偶极子,使光阳极具有 0.94 eV 的高 SBH。结果,实现了 1.03 V vs RHE 的高光电压和有利的起始电位。此外,NiSi 的强碱性腐蚀抗性还使光阳极在 1 M KOH 中的 PEC 操作期间具有高稳定性。我们的工作提供了一种通用策略来制造金属-硅化物/Si 肖特基结光电极,以实现高性能 PEC 水分解。关键词:硅、金属硅化、掺杂剂偏析、光阳极、水分解■ 介绍
我们研究了在近乎正常的 40 keV Ar + 溅射和同时进行的 Fe 斜向共沉积下硅表面的纳米图案化。离子束入射角保持在 15°,在没有金属掺入的情况下不会产生任何图案。通过原子力显微镜(其形态和电模式)、卢瑟福背散射光谱、X 射线光电子能谱、扫描俄歇以及透射和扫描电子显微镜进行形态和成分分析。最初,纳米点结构随机出现,随着离子通量的增加,它们逐渐沿与 Fe 通量垂直的方向排列。随着通量的增加,它们聚结在一起,形成波纹图案。随着与金属源的距离减小(即金属含量增加),图案动态和特性分别变得更快和增强。对于最高的金属通量,波纹会变得相当大(高达 18 μ m)且更直,缺陷很少,图案波长接近 500 nm,同时保持表面粗糙度接近 15 nm。此外,对于固定离子通量,图案顺序会随着金属通量而改善。相反,图案顺序随离子通量增加的增强率并不依赖于金属通量。我们的实验观察与 Bradley 模型的预测和假设一致 [RM Bradley,Phys。Rev. B 87,205408(2013)] 几项成分和形态研究表明,波纹图案也是成分图案,其中波纹峰具有更高的铁硅化物含量,这与模型一致。同样,波纹结构沿着垂直于 Fe 通量的方向发展,并且图案波长随着金属通量的减少而增加,其行为与模型预测在性质上一致。
我们发现的是,使用硅和相关的硅化学产品可以减少许多必需产品和服务的碳足迹。使用有机硅,硅氧烷和硅烷会产生节能和温室气体排放减少,超过生产和寿命终止处置的影响,均高出9倍。这是先前估计范围的首要估计范围。