通过将碳和硅添加到碳化物表面上,我的论文揭示了一种创建二维碳化硅碳化物的新方法,这种材料可能导致更有效的电子设备。如大多数人所知道的那样,今天的电子产品严重依赖硅。为了改善我们的设备,这些硅电子设备已变得越来越小,但现在已经达到了极限。想象一下,如果不使用庞大的三维结构,我们可以使用堆叠在一起的超薄原子。这些床单被称为二维(2D)材料,自2010年获得诺贝尔奖获奖石墨烯以来就引发了一波研究。石墨烯是一层碳原子,向我们展示了2D材料可以彻底改变技术,但它有局限性。例如,石墨烯没有带隙,这对于控制计算机等设备中的电流至关重要,我们需要清除开/关状态(例如管理汽车流量的交通信号灯)。此频段间隙对于创建二进制二进制(电流)和零(无电流)是计算机逻辑的基础至关重要。带有带隙的材料称为半导体,具有直接带隙的材料对于LED,激光器和太阳能电池等设备特别有用。直接带隙就像是一条井井有条的道路,在交通信号灯处停止后,允许汽车平稳,高效地加速,而间接的频段隙就像是一条扭曲的道路,使汽车需要更长的时间才能达到全速。建立在这一发现的基础上,我的目标是直接在TAC水晶上创建2D SIC。在我的研究中,我专注于创建一种新的2D材料:碳化硅(SIC),将硅原子和碳原子组合成单层。科学家认为,2D SIC可能是一个改变游戏规则的人,因为它具有直接的乐队差距,但使其非常具有挑战性。最近,一个突破表明,在顶部加热用薄薄的碳化物(TAC)加热碳化硅晶体可以帮助形成2D SIC。通过将碳和硅添加到加热的TAC表面,我成功形成了2D SIC。这种方法使我可以更好地控制编队过程,并更深入地了解2D SIC的成长方式。另外,通过调整碳的量,我可以在2D SIC的顶部创建石墨烯层。石墨烯的稳定性提高了将其用作2D SIC上的保护层的令人兴奋的可能性。未来的研究可以探索这种可能性。最重要的是,我的作品展示了一种创建2D SIC的新方法,使其更接近被用于下一代电子和光学设备。这可能会导致更快,更高效的技术,继续我们用硅取得的进步,但将其提升到一个新的水平。
图表 9 : SiC 产业链及代表企业 ............................................................................................................................. 6 图表 10 : 导电型碳化硅衬底 ................................................................................................................................. 6 图表 11 : 半绝缘型碳化硅衬底 ............................................................................................................................. 6 图表 12 : WolfSpeed 公司导电碳化硅衬底演进过程 ........................................................................................... 7 图表 13 : SiC 衬底制作工艺流程 ........................................................................................................................... 8 图表 14 : PVT 法生长碳化硅晶体示意图 ............................................................................................................. 8 图表 15 : 用于制备碳化硅的籽晶 ......................................................................................................................... 8 图表 16 : CMP 过程示意图 ................................................................................................................................... 10 图表 17 : CVD 法制备碳化硅外延工艺流程 ........................................................................................................11 图表 18 : SiC 功率器件种类 ............................................................................................................................... 12 图表 19 : SiC-SBD 与 Si-SBD 比较 ..................................................................................................................... 13 图表 20 : SiC-SBD 正向特性 ............................................................................................................................... 13 图表 21 : SiC-SBD 温度及电流依赖性低 ........................................................................................................... 13 图表 22 : SiC-SBD 具有优异的 TRR 特性 ........................................................................................................... 13 图表 23 : SiC MOSFET 与 Si IGBT 开关损耗对比 .............................................................................................. 14 图表 24 : SiC MOSFET 与 Si IGBT 导通损耗对比 .............................................................................................. 14 图表 25 : SiC MOSFET 体二极管动态特性 ......................................................................................................... 14 图表 26 : N 沟道 SiC IGBT 制备技术图 ............................................................................................................. 15 图表 27 : SiC 行业发展阶段曲线 ....................................................................................................................... 16 图表 28 : SiC 市场规模现状及预测 ................................................................................................................... 17 图表 29 : 新能源汽车包含功率器件分布情况 .................................................................................................. 18 图表 30 : 对车载和非车载的器件要求 .............................................................................................................. 18 图表 31 : 车载 OBC 发展趋势 ............................................................................................................................. 19 图表 32 : 硅基材料功率器件的工作极限 ........................................................................................................... 19 图表 33 : 全球新能源汽车碳化硅 IGBT 市场规模 ............................................................................................ 19 图表 34 : 全球新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 35 : 中国新能源汽车市场销量及增长率预测 ............................................................................................ 20 图表 36 : 2020 年全球新能源乘用车车企销量 TOP10( 辆 ) ................................................................................ 21 图表 37 : 2020 年全球新能源乘用车车型销量 TOP10( 辆 ) ................................................................................ 21 图表 38 : 光伏碳化硅器件优越性 ....................................................................................................................... 22 图表 39 : 全球光伏需求预测 ............................................................................................................................... 22 图表 40 : 全球光伏碳化硅 IGBT 市场规模 ........................................................................................................ 23 图表 41 : 全球光伏 IGBT 市场规模 .................................................................................................................... 23 图表 42 : 2015-2021 年中国累计充电桩数量 ..................................................................................................... 24 图表 43 : 2015-2020 年中国车桩比例 ................................................................................................................. 24 图表 44 : 中国新能源汽车充电桩市场规模及预测 ............................................................................................ 25 图表 45 : 全球充电桩碳化硅器件市场规模 ....................................................................................................... 25 图表 46 : 全球轨道交通碳化硅市场规模及预测 ............................................................................................... 26 图表 47 : 2020 年全球轨道交通运营里程 TOP10 .............................................................................................. 26 图表 48 : 轨道交通碳化硅器件占比预测 ........................................................................................................... 27 图表 49 : 全球轨道交通碳化硅技术采用情况 ................................................................................................... 27 图表 50 : 2015-2025 年中国 UPS 市场规模及预测 ............................................................................................ 28 图表 51 : 2015-2021 年中国 UPS 器件类型情况 ................................................................................................ 28 图表 52 : 2011-2020 年全球 UPS 市场规模及预测 ............................................................................................ 29 图表 53 : 2019-2025 年全球 UPS 碳化硅器件市场规模 .................................................................................... 29 图表 54 : 国外碳化硅衬底技术进展 ................................................................................................................... 30 图表 55 : 碳化硅衬底尺寸市场占比演变 ........................................................................................................... 30
Baba , A.、Bai , D.、Sadoh , T.、Kenjo , A.、Nakashima , H.、Mori , H. 和 Tsurushima , T. (1997)。硅晶体中辐射诱导缺陷和非晶化的行为。物理研究中的核仪器和方法。 B 部分:光束与材料和原子的相互作用,121(1 – 4),299 – 301。,Li,X.,Qi,J.,Yu,D.,Li,J.和Gao,P.(2018)。从原子尺度洞察甲基铵碘化铅钙钛矿的结构不稳定性及其分解途径。自然通讯, 9 (1), 4807。陈绍军, 张颖, 张鑫, 赵建, 赵哲, 苏鑫, 华哲, 张建, 曹建, 和冯建军 (2020)。有机-无机杂化钙钛矿通过中间超结构的一般分解途径及其抑制机制。先进材料, 32 (29), 2001107。Cortecchia, D., Lew, K. C., So, J.-K., Bruno, A., & Soci, C. (2017)。多维钙钛矿薄膜中自组织异质相的阴极发光。材料化学, 29 (23), 10088 – 10094。Dar, MI、Jacopin, G.、Hezam, M.、Arora, N.、Zakeeruddin, SM、Deveaud, B.、Nazeeruddin, MK 和 Grätzel, M. (2016)。 CH3NH3PbI3-xBr x 钙钛矿单晶中的不对称阴极发光发射。 ACS Photonics, 3 (6), 947 – 952。Divitini, G., Cacovich, S., Matteocci, F., Cinà, L., Di Carlo, A., & Ducati, C. (2016)。原位观察钙钛矿太阳能电池的热致降解。自然能量, 1 (2), 15012。http://dx.doi.org/10.1037/0021-843X.111.1.15012 Drouin, D., Couture, R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007)。 CASINO V2.42 — 为扫描电子显微镜和微分析用户提供快速且易于使用的建模工具。扫描, 29 (3), 92 – 101。Ferrer Orri, J.;莱内曼,J.;普雷斯塔特,E.;约翰斯通,DN; Tappy,N.LightSpy。 2021. Giannuzzi, LA、Geurts, R. 和 Ringnalda, J. (2005)。 2 keV Ga + FIB 铣削可减少硅中的非晶损伤。显微镜和微分析,11(S02),828-829。离子偏析对混合卤化物钙钛矿薄膜局部光学特性的影响。纳米快报, 16 (2), 1485 – 1490。Hidalgo, J., Castro-Mendez, A., & Correa-Baena, J. (2019)。钙钛矿太阳能电池的成像和映射表征工具。先进能源材料, 9 (30), 1900444。Huh, Y., Hong, K. J., & Shin, K. S. (2013)。聚焦离子束铣削在金属和电子材料中引起的非晶化。显微镜和微分析,19 (S5),33 – 37。Jeangros, Q., Duchamp, M., Werner, J., Kruth, M., Dunin-Borkowski, RE, Niesen, B., Ballif, C., & Hessler-Wyser, A. (2016)。原位 TEM 分析