2021年4月至6月的季度开始,首先是第一年的学生,这是第一次来校园。不幸的是,由于政府施加了锁定而与第二浪浪潮作斗争,这种兴奋是短暂的。,我们通过课堂设置回到了混合教学模式,并继续教学过程。课程和暑期实习计划在线完成,包括结束学期考试。一项关于“电力电子高级控制技术”,“硅技术2021”的STTP - 针对学生的全国性在线海报演示竞赛,以及本季度的“ 5G技术” FDP也进行了。第二波的共同浪潮使硅家族的成员留下了深刻的伤痕。我们的几个学生和工作人员都输给了Corona。我们的咨询心理学家一直在与学生和员工进行情感康复的不懈努力。该研究所还采取了行动,为失去了唯一的家庭成员的学生安排各种来源的财政支持。由BMC在Silicontech校园设立的驱动式疫苗接种中心已被认为是社区中最好的中心之一。还组织了专门为学生和员工的特殊疫苗接种驱动器。直到大流行状况过去,让我们保持安全,照顾我们的健康,并保持我们对卓越的承诺。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或任何雇员均未对任何信息,设备,产品或流程的准确性,完整性或有用性做出任何法律责任或责任,也不属于任何法律责任或责任,或者承担任何法律责任或责任感,或者表示其使用不会侵犯私有拥有权利。在本文中提及任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,推荐或受到美国政府或其任何机构的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或任何代理机构的观点和意见。
虚拟筛选正在作为一种高度应用的技术出现,并作为广泛使用的搜索和识别潜在命中的方法获得了突出,与高插入率筛选相比,发现了发现新颖和有效的化合物所需的时间。最近,与单个软件对接相比,具有多个程序的模拟优越性已被解散。这项工作的目的是应用共识对接,分子力学/广义出生表面积(MM/GBSA)游离结合能量重新计算,并在最近合成的基于吡咯的内部基于吡咯的夹层 - 氢氮化物区域的内部数据集中进行体外评估,以搜索新型乙酰基烯基烯酶(ACHETYLCHOLCHOLINERTERASE)(ACHEER)(ACHEE)。使用了两个许可的软件 - 金5.3和滑行,用于虚拟筛选,并确定了几个化学治疗势命中率。此外,还提供了MM/GBSA的无结合能重计重估算以增强硅成果中的鲁棒性。前十名基于吡咯的氢氮化物hydrazones的MM/GBSA得分范围从-60.44到-70.93 kcal/mol。随后对最高排名化合物的体外评估表明,12D表现出最高的ACHE抑制活性,抑制速率为55%,浓度为10μM。此外,这种基于吡咯的ACHE抑制剂与酶的活性位点形成了稳定的复合物。与活性氨基残基Tyr72和Tyr286的相互作用表明12D位于酶的外围阴离子位点附近。此外,在使用Qikprop进行的硅ADME研究中,12D具有最佳的药代动力学特性。总而言之,这项研究通过计算和实验发现的结合确定了一种新型基于吡咯的ACHE抑制剂12D。
doi:https://dx.doi.org/10.30919/es1060锂离子电池的基于硅的阳极开发及其在固态电解器Yifei Zhou,1 Wenfan Feng,1 Wenfan Feng,1 Yanbin Xu Xu 1,* Yanbin Xu Xu Xu 1,* Xingang Liu,* Xingang Liu,1 Zhiai Weqiia,1 Zhiai wangang,1 Zhi wangang,1 Zhi wang, Burcar,2 Zhe Wang 2,*和Zhenglong Yang 1,*抽象的锂离子电池(LIBS)由于其高能密度,较大的工作温度范围,高工作电压以及良好的安全性和循环稳定而广泛用于日常生活的各个方面。阳极是锂离子电池的重要组成部分,可以存储和释放锂离子。因此,选择阳极对改善电池性能的关键影响。基于硅的阳极预计将是下一代高性能锂离子电池的阳极材料,这是由于其高理论特异性能力和其他优势。然而,锂过程中硅的体积变化和诱导的SEI的不稳定性对硅阳极的发展构成了巨大的挑战。本文回顾了锂离子电池中硅阳极的开发,系统地介绍了基于硅的材料作为阳极所带来的挑战和改进方法,并研究了硅阳极在固态电解质中的应用。最后,关于锂电池的硅阴极的未来开发的一些看法。
社区学院、Worksource、华盛顿县和希尔斯伯勒市通过为期两周的快速启动计划开展工作,该计划包括为未来的技术人员提供加速职业准备和实践学习。快速启动旨在增加该领域代表性不足的群体和女性的机会。截至 2024 年 10 月,已有 27 个快速启动班毕业,超过 200 名毕业生从该计划中受聘。
在 CEA Tech 和 Leti 内部,硅技术和组件研究活动由两个部门共同承担,共有约 600 名研究人员:硅技术部门开展创新工艺工程解决方案和研究,全年 24/7 全天候运营,7,500 平方米的先进洁净室空间分为三个不同的技术平台。硅组件部门开展纳米电子和硅异质集成研究,重点关注两个主要领域:CMOS 器件的不断缩小,以扩展摩尔定律,实现更快、更便宜的计算能力,以及将新功能集成到 CMOS 中,例如传感器、功率器件、成像技术和新型内存,以实现新应用。本手册包含 47 份一页的研究摘要,涵盖了我们硅器件和技术部门重点领域的进展,重点介绍了 2015 年取得的新成果。
本书章节 用 KCl–K 2 SiF 6 熔体电化学合成纳米硅,用于高功率锂离子电池 Timofey Gevel 1,2、Sergey Zhuk 1,2、Natalia Leonova 1、Anastasia Leonova 1、Alexey Trofimov 1,2、Andrey Suzdaltsev 1,2* 和 Yuriy Zaikov 1,2 1 俄罗斯乌拉尔联邦大学电化学器件与材料科学实验室 2 俄罗斯科学院乌拉尔分院高温电化学研究所 *通讯作者:Andrey Suzdaltsev,乌拉尔联邦大学电化学器件与材料科学实验室,Mira St. 28, 620002 叶卡捷琳堡,俄罗斯 2022 年 4 月 12 日出版 本书章节是 Andrey Suzdaltsev 等人发表的文章的转载al. 于 2021 年 11 月在 Applied Sciences 上发表。 (Gevel, T.;Zhuk, S.;Leonova, N.;Leonova, A.;Trofimov, A.;Suzdaltsev, A.;Zaikov, Y. 通过 KCl-K 2 SiF 6 熔体电化学合成纳米硅,用于强效锂离子电池。应用科学。2021,11,10927。https://doi.org/10.3390/app112210927) 如何引用本章:Timofey Gevel、Sergey Zhuk、Natalia Leonova、Anastasia Leonova、Alexey Trofimov、Andrey Suzdaltsev、Yuriy Zaikov。通过 KCl-K 2 SiF 6 熔体电化学合成纳米硅,用于强效锂离子电池。收录于:应用科学主要档案。印度海得拉巴:Vide Leaf。2022 年。© 作者 2022 年。本文根据知识共享署名 4.0 国际许可条款分发(http://creativecommons.org/licenses/by/4.0/),该许可条款允许
摘要:氨基硅烯分子(HSiNH 2 ,X 1 A ′) 是不饱和氮硅烯的最简单代表,它是在单次碰撞条件下通过气相基元反应形成的,反应涉及硅基自由基(SiH)和氨(NH 3 )。反应由硅基自由基无势垒加成到氮的非键合电子对上引发,形成 HSiNH 3 碰撞复合物,然后通过从氮原子中失去氢原子,单分子分解为氨基硅烯(HSiNH 2 )。与等价氨基亚甲基卡宾 (HCNH 2 , X 1 A ′ ) 相比,通过用硅取代单个碳原子,对等价甲亚胺 (H 2 CNH) − 氨基亚甲基 (HNCH 2 ) 和氨基硅烯 (HSiNH 2 ) − 硅亚胺 (H 2 SiNH) 异构体对的稳定性和化学键产生了重大影响;例如,卡宾与硅烯的热力学稳定性逆转了 220 kJ mol − 1。因此,发现第十四主族元素硅的等价性与原子碳几乎没有相似性,不仅对反应性而且对热化学和化学键也表现出显着影响。