有机硅聚合物在计算机技术,电信,微电和宏观电源以及电源分布方面发挥了不可或缺的作用。有机硅聚合物密封,键和封装,从高度敏感的电路和微处理器到半导体。硅胶聚合物确保电子组件受到电脑,电器,汽车和飞机的极高热量,水分,盐,腐蚀,污染和运动的保护。由于有机硅聚合物的保护性能,因此可以使用电子设备,组件,组件和系统中的许多技术和电子创新。
单一实体组合设备是一种包含既有设备又有药物成分的制造组件的疗法,它已显示出解决当今患者面临的一些最具挑战性的慢性疾病的潜力。通过持续开发这些技术,患者的生活质量将得到显著改善,例如花更少的时间管理病情、最大限度地减少治疗的副作用,以及对治疗治疗其疾病的能力总体上更有信心。由于这些技术的潜在好处,科学界也高度重视研究这些技术,并提出它们在治疗慢性疾病和危及生命的疾病方面具有可行性。
虚拟筛选正在作为一种高度应用的技术出现,并作为广泛使用的搜索和识别潜在命中的方法获得了突出,与高插入率筛选相比,发现了发现新颖和有效的化合物所需的时间。最近,与单个软件对接相比,具有多个程序的模拟优越性已被解散。这项工作的目的是应用共识对接,分子力学/广义出生表面积(MM/GBSA)游离结合能量重新计算,并在最近合成的基于吡咯的内部基于吡咯的夹层 - 氢氮化物区域的内部数据集中进行体外评估,以搜索新型乙酰基烯基烯酶(ACHETYLCHOLCHOLINERTERASE)(ACHEER)(ACHEE)。使用了两个许可的软件 - 金5.3和滑行,用于虚拟筛选,并确定了几个化学治疗势命中率。此外,还提供了MM/GBSA的无结合能重计重估算以增强硅成果中的鲁棒性。前十名基于吡咯的氢氮化物hydrazones的MM/GBSA得分范围从-60.44到-70.93 kcal/mol。随后对最高排名化合物的体外评估表明,12D表现出最高的ACHE抑制活性,抑制速率为55%,浓度为10μM。此外,这种基于吡咯的ACHE抑制剂与酶的活性位点形成了稳定的复合物。与活性氨基残基Tyr72和Tyr286的相互作用表明12D位于酶的外围阴离子位点附近。此外,在使用Qikprop进行的硅ADME研究中,12D具有最佳的药代动力学特性。总而言之,这项研究通过计算和实验发现的结合确定了一种新型基于吡咯的ACHE抑制剂12D。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
此媒介中显示的数据符合我们当前的知识状态,但不会在收据时仔细地免除用户立即检查所有耗材。我们保留在技术进度或新发展范围内更改产品常数的权利。该媒介中提出的建议应通过初步试验检查,因为在处理我们无法控制的过程中,尤其是在使用其他公司原材料的情况下。我们提供的信息不会使用户免受调查侵犯第三方权利的可能性的义务,并在必要时澄清该职位。使用建议不构成针对特定目的的适合性或适用性的明示或暗示保修。
硅胶已被广泛用作食品,药物和其他各种目的的干衣机。硅胶基本上是一种安全的材料,但是由于其水平性质,硅胶很容易被危险材料污染。除此之外,硅胶不能自然地自然分解,因此使用大量硅胶会导致大量的硅胶废料。因此,正在努力寻找替换材料,其中一种是使用稻壳灰很容易自然分解的煤灰。这项研究旨在测试稻壳灰作为硅胶的替代品。测试在非编织土工织物袋(SG-N)中使用了商业硅胶(SG),硅凝胶和非织造土工织物袋(AS-N)中的稻壳灰。在这项研究中,将AS-N与SG和SG-N进行了比较。 对15克的重量进行了180分钟的水蒸气吸收测试。 将三个样品中的每一个都放在一个封闭的罐子中,以避免在环境中对水蒸气的污染。 用湿度计测量每个罐子的相对湿度。 在整个测试过程中,罐子盖一直关闭。 结果表明,SG,SG-N和AS-N分别降低了23%,22%和24%。 使用AVRAMI方程进行建模用于推断吸收结果。 研究结果表明,与硅胶和硅胶非织造土工杂志相比,15克非编织土工壳灰的水蒸气吸收能力优越。 因此可以得出结论,用稻壳灰作为基本材料的干衣机可用于烘干机,食品干燥机和其他需求等需求。在这项研究中,将AS-N与SG和SG-N进行了比较。对15克的重量进行了180分钟的水蒸气吸收测试。将三个样品中的每一个都放在一个封闭的罐子中,以避免在环境中对水蒸气的污染。用湿度计测量每个罐子的相对湿度。在整个测试过程中,罐子盖一直关闭。结果表明,SG,SG-N和AS-N分别降低了23%,22%和24%。使用AVRAMI方程进行建模用于推断吸收结果。研究结果表明,与硅胶和硅胶非织造土工杂志相比,15克非编织土工壳灰的水蒸气吸收能力优越。因此可以得出结论,用稻壳灰作为基本材料的干衣机可用于烘干机,食品干燥机和其他需求等需求。
将纳米Si颗粒与多种碳组成(硅碳复合材料)混合在一起是克服硅离子电池(LIB)中阳极中有机成分的弱点的常见方法之一。石墨是一种碳同种型,具有非常好的有组织的结构和高电导率,因此它成为复合/c的最理想和实用的碳材料。椰子壳木炭废物用作石墨前体,在1200°C的温度下,镍催化剂石墨化过程3小时(C-NI)。在这项研究中,矫形四乙基(TEOS)用作硅酮的来源。 进行水解过程以形成SIO 2/c过渡阶段,其每克C-Ni(来自椰子壳木炭的石墨粉)的Teos mol的变化为0.045 mol/g,0.09 mol/g,0.09 mol/g和0.18 mol/g。 接下来,在800°C的温度下,使用热还原法和在650°C的温度下使用雄激素还原方法来降低SIO 2 /c转变阶段。< /div> < /div> 在样品中获得的XRD的结果降低了雄伟的含量,显示了Si相的存在。 显微镜电子扫描图像的结果还支持降低镁热的Si/C TM样品的存在。 拉曼光谱分析结果表明,在C-Ni样品,Si/C T和Si/C TM上的比率I D/I G分别为1,169、1,012和1,260。 在C-NI和S/C TM样品中,带有SI/C TM样品结果的电导率测试的电导率值为12,8695(s/cm),高于C-NI,仅为4,53170(最多)。在这项研究中,矫形四乙基(TEOS)用作硅酮的来源。进行水解过程以形成SIO 2/c过渡阶段,其每克C-Ni(来自椰子壳木炭的石墨粉)的Teos mol的变化为0.045 mol/g,0.09 mol/g,0.09 mol/g和0.18 mol/g。接下来,在800°C的温度下,使用热还原法和在650°C的温度下使用雄激素还原方法来降低SIO 2 /c转变阶段。< /div> < /div>在样品中获得的XRD的结果降低了雄伟的含量,显示了Si相的存在。显微镜电子扫描图像的结果还支持降低镁热的Si/C TM样品的存在。拉曼光谱分析结果表明,在C-Ni样品,Si/C T和Si/C TM上的比率I D/I G分别为1,169、1,012和1,260。在C-NI和S/C TM样品中,带有SI/C TM样品结果的电导率测试的电导率值为12,8695(s/cm),高于C-NI,仅为4,53170(最多)。关键字:阳极,石墨,硅碳复合材料,lib,椰子废物
抽象简介:外泌体,一个细胞外囊泡(EV)的子集,对于各种情况下的细胞间通信至关重要。尽管它们的尺寸很小,但它们载有不同的货物,包括RNA,蛋白质和脂质。对受体细胞的内在化引起了人们对细胞功能潜在破坏的担忧。值得注意的是,外泌体穿越血脑屏障(BBB)的能力具有重要意义。方法:对神经元 - 格利亚通信框架内的外泌体的现有学术文献进行彻底调查,在PubMed,Google Scholar和Science Direct Directabases中实施了全面的搜索策略。关键字“外泌体”,“神经元 - 胶体传播”和“神经系统疾病”的多个迭代被系统地识别相关的出版物。此外,探索临床。GOV数据库来识别与细胞信号传导相关的临床试验,利用类似的术语。结果:尽管外泌体的直接实际应用有些限制,但它们作为致病属性的潜力为精确靶向的神经学疾病的治疗策略提供了有希望的机会。本综述列出了当代对外来体的关键作用的见解,因为代理中枢神经系统中神经元和神经胶质细胞之间的沟通(CNS)(CNS)(结论)。结论:通过深入探讨CNS中的综述过程中,该综述在CNS中进行了综述,该综述在cns中的过程有助于深度的理解。神经系统疾病领域潜在治疗进步的方法。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。