Dentsply Sirona推出了一种新的高强度玻璃陶瓷材料Cerec Tessera™。它的特征是晚期锂陶瓷材料。它具有40-45%的玻璃含量,亚微米粒径约为0.5 µm。它由约90%二硅酸盐晶体(5%磷酸锂)组成,其余的5%Virgilite晶体为小(<100纳米)硅酸盐硅酸盐硅酸盐骨骼状晶体。材料的高强度是通过涂抹表面釉料并将铣削的恢复在Speedfire烤箱(Dentsply Sirona)中的4½分钟矩阵发射周期中产生的。矩阵启动通过形成新的virgilite晶体,表面愈合玻璃含量,并增加密度以达到大于700 MPa的弯曲强度,从而优化了晶体结构。
成功地解码了控制多组分功能玻璃中结晶的结构描述符,可以为从试用方法和玻璃/玻璃陶瓷组成设计的过渡和经验建模铺平道路,从而朝着更合理和科学严格的定量结构 - 结构 - 实用关系(QSPR)模型。然而,由于多组分玻璃的组成和结构复杂性以及与成核相关的时间和长度尺度的较长,QSPR模型的发展和验证仍在其婴儿期。本文中提出的工作是通过结合实验和计算材料科学的优势来解码化学结构驱动因素,以促进或抑制碱/碱性 - 碱性 - 钙化型Alu Minoborosilicate在基于QSPR模型的开发中,促进或抑制成核和晶体的增长的化学结构驱动因素,从而促进或抑制核的成核和晶体生长,从而使基于基于QSPR模型的开发(PAWER M.DAWAID)促进成核和晶体生长。结果揭示了以下两个描述符,这些描述符在功能玻璃中特定的铝硅酸盐相位的成核和结晶:(1)SIO 4和ALO 4单元之间的混合程度,即Si - O - a-o - al链接,以及(2)(2)在玻璃结构中的镜头阶段之间的差异(2)差异。基于已建立的组成 - 结构 - 结晶行为关系,基于聚类分析的QSPR模型已经开发(并进行了测试),以预测所研究玻璃中尼索线(和氧化足)结晶的倾向。该模型已经在目前和以前的研究中对几个组成进行了测试,并成功预测了所有玻璃成分的结晶倾向,即使在先前的经验和半经验模型失败的情况下,即使是在此情况下。
一名 49 岁的女性患者,主诉右下第二磨牙敏感。经临床检查,可以观察到牙齿颊侧有多处裂纹以及大面积 I 类复合修复体。在局部麻醉下移除旧的汞合金修复体后,我们可以确定存在多处裂纹。计划安装部分牙冠以遵循微创牙科理念。牙齿采用不透明核心堆积材料结合大块填充复合材料进行堆积,以尽量减少硬化牙本质对修复体最终美观的影响。然后按照制造商的建议为牙齿安装高级锂二硅酸盐陶瓷 (CEREC Tessera) 部分牙冠,并留出 1 毫米间隙用于粘合剂粘接。对于最终的光学印模,使用双线技术进行软组织置换,并使用收敛性回缩糊以避免在扫描过程中出血。约 3 分钟后,洗掉糊剂,除去顶部线,并用 CEREC Primescan 获取光学印模。使用 CEREC 软件设计修复体,在 CEREC Primemill 中铣削,并用 CEREC SpeedFire 中的 DS Universal Stain & Glaze 套件上釉。试戴后,用 5% HF 酸处理修复体的凹雕表面 20 秒。将修复体在蒸馏水的超声波槽中清洗 5 分钟,并在处理过的表面涂上硅烷。用橡皮障隔离牙齿。用甘氨酸粉气流磨清洁准备好的表面,选择性蚀刻牙釉质,并在表面涂上 Prime&Bond 通用粘合剂,以便与 Calibra Ceram 粘合剂树脂水泥进行最终粘合。对咬合情况进行了最终检查,约 120 分钟后,修复体成功粘合到牙齿上。
摘要:在T = 800、700°C和P = 1和2 kbar的si-al-na-k-Li-f-h-h-O模型花岗岩系统中进行研究,以及t = 600、550、500和400°C和P = 1 kbar,t = 600、550、500和400 kbar,以及来自2至50 wt t t t t t t的水。将初始组成设置的方式使所得硅酸盐熔体的组成接近花岗岩共晶。表明,在LI存在的情况下,系统中形成了两种不混溶的熔体 - 铝硅酸盐(L)和一个盐碱铝氟化物(LF)。表明,在800°°,°= 1 kbar和2 kbar和2 kbar和水含量> 10 wt。%,三个阶段在系统中是平衡的:L,LF和流体(FL)。不包含REE的冰糖(CRL)开始从700°C的盐熔体结晶。Quartz(QTZ)从600°C的硅酸盐融化中结晶,平衡相为L,LF,CRL,QTZ。在t = 500°C QTZ,Na和K铝氟化物和铝硅酸盐岩从铝硅酸盐熔体结晶。观察到CRL和QTZ的关节结晶。在盐和硅酸盐熔体中形成了冰晶石和硫酸盐的大晶体。同时,富含LI和REE的残留盐被部分保存。lf在400°C下完全结晶,L处于亚稳态。确定REE,SC,Y和LI积聚在盐中,最高为500°C,分区系数>>1。REE和SC在t = 500°C和400°C下的晶体相的组成。sc party isomorphine替换Al。REE通常形成其自身的LNF3类型氟化物阶段。
1. Aziz A、El-Mowafy O、Paredes S。使用 CAD/CAM 技术制作的锂二硅酸盐玻璃陶瓷冠的临床结果:系统评价。Dent Med Probl。2020;57(2):197-206。2. Marchesi G、Camurri Piloni A、Nicolin V、Turco G、di Lenarda R。椅旁 CAD/CAM 材料:临床应用的当前趋势。生物学。2021;10(11):1170。3. Stawarczyk B、Özcan M、Trottmann A、Schmutz F、Roos M、Hämmerle C。CAD/CAM 树脂块及其牙釉质拮抗剂的双体磨损率。J Prosthet Dent。2013;109(5):325-332。 4. Arif R、Yilmaz B、Johnston WM。用于层压贴面和全冠的 CAD-CAM 修复材料的体外颜色染色性和相对半透明度。J Prosthet Dent。2019;122(2):160-166。5. Corado HPR、da Silveira P、Ortega VL 等人。用于 CAD/CAM 的基于锂二硅酸盐和氧化锆增强锂硅酸盐的玻璃陶瓷的抗弯强度。Int J Biomater。2022;2022:1-9。6. Chen Y、Yeung AWK、Pow EHN、Tsoi JKH。锂二硅酸盐在牙科中的现状和研究趋势:文献计量分析。J Prosthet Dent。2021;126(4):512-522。 7. Abad-Coronel C、Ordoñez Balladares A、Fajardo JI、Martín Biedma BJ。使用 CAD/CAM 系统制造并使用不同热单元和程序结晶的锂二硅酸盐长石修复体的抗断裂性。材料。2021;14(12):3215。8. Lubauer J、Belli R、Peterlik H、Hurle K、Lohbauer U。把握锂的炒作:洞察现代牙科锂硅酸盐玻璃陶瓷。Dent Mater。2021;38:318-332。9. Gürdal I、Atay A、Eichberger M、Cal E、Üsümez A、Stawarczyk B。热循环后 CAD-CAM 材料和复合树脂水泥的颜色变化。J Prosthet Dent。 2018;120(4):546-552。10. Phark JH、Duarte S Jr。新型锂二硅酸盐玻璃陶瓷的微观结构考虑因素:综述。牙科美学修复杂志。2022;34(1):92-103。11. Stawarczyk B、Mandl A、Liebermann A。现代 CAD/CAM 硅酸盐陶瓷及其半透明度以及水热老化对半透明度、马氏硬度、双轴抗弯强度和可靠性的影响。机械行为生物医学材料杂志。2021;118:104-456。12. Gunal B、Ulusoy MM。不同厚度的当代单片 CAD-CAM 修复材料的光学特性。牙科美学修复杂志。2018;30(5):434-441。 13. Sen N、Us YO。整体式 CAD-CAM 修复材料的机械和光学性能。J Prosthet Dent。2018;119(4):593-599。14. Kurt M、Banko glu Güngör M、Karakoca Nemli S、Turhan BB。上釉方法对硅酸盐陶瓷光学和表面性能的影响。J Prosthodont Res。2020;64(2):202-209。15. Donmez MB、Olcay EO、Demirel M。纳米锂二硅酸盐陶瓷在不同老化过程后的抗负载失效性能和光学特性。材料。2022;15(11):4011。 16. Subas¸ ı MG、Alp G、Johnston WM、Yilmaz B. 厚度对单片 CAD-CAM 陶瓷光学特性的影响。J Dent。2018;71:38-42。17. Çakmak G、Donmez MB、Kashkari A、Johnston WM、Yilmaz B。厚度、水泥色度和咖啡热循环对氧化锆增强锂硅酸盐陶瓷光学性能的影响。J Esthet Restor Dent。2021;33(8):1132-1138。18. Zarone F、Ruggiero G、Leone R、Breschi L、Leuci S、Sorrentino R。氧化锆增强锂硅酸盐 (ZLS) 的机械和生物学性能:文献综述。J Dent。2021;109:103661。
碳钢腐蚀是由于金属和周围物质之间的化学反应而发生的。腐蚀可以使用硅酸盐的腐蚀抑制剂抑制。以二氧化硅形式的棕榈油壳提取物可以用作ST-37碳钢中的腐蚀抑制剂,浸泡时间为4、8和12天,在水上,海水和乙酸中为25%。施加到钢的抑制剂浓度的变化为10 ppm,20 ppm,30 ppm,40 ppm,并且在每种培养基中作为树脂硬质(RH)粘合剂。测试腐蚀速率是使用减肥方法确定的,并将抑制的有效性用作对照。腐蚀速率增加取决于样品中的体重减轻量。用FTIR和XRF进行硅酸盐结果的表征。结果表明,获得的硅酸盐产量为76.99%。ftir结果波数为3466.08 cm -1和2318.44 cm -1,表明存在硅烷醇基团(Si-OH)和Siloxsan(Si-O-SI),并表明基于98.01%的XRF结果,预期有硅酸盐化合物和硅水平。30 ppm的浓度是在蒸馏水和海水浸泡培养基中获得的最佳抑制剂浓度。浓度为20 ppm是在25%乙酸浸泡培养基中获得的最佳抑制剂浓度。在30 ppm抑制剂浓度的水上培养基中,抑制效率的最大水平是在浸泡时间为12天的情况下获得的。关键字:贝壳,抑制剂,棕榈,硅酸盐,ST-37治疗后ST-37碳钢的SEM表征显示,没有抑制作用的碳钢表明,表面腐蚀的腐蚀性超过碳钢并具有抑制作用。
摘要:目前的成核模型为晶体材料的形成提出了多种选择。然而,在分子水平上探索和区分不同的结晶途径仍然是一个挑战,特别是对于复杂的多孔材料。这些通常由具有有序框架和孔隙成分的大晶胞组成,并且经常在复杂的多相合成介质中成核,从而限制了深入表征。这项工作展示了如何在单相水合硅酸盐离子液体 (HSIL) 中详细记录结晶过程中的铝硅酸盐形态。观察结果表明,沸石可以通过由铝硅酸盐阴离子与碱金属阳离子成离子配对组成的离子配对预成核簇的超分子组织形成,并暗示 HSIL 中的沸石结晶可以在现代成核理论的范围内描述。
变色已被确定为更换假牙的主要临床原因之一 (15)。因此,本实验室研究的目的是评估漱口水对采用不同表面处理的可压锂二硅酸盐玻璃陶瓷颜色稳定性的影响。零假设指出表面处理和漱口水浸泡不会影响可压锂二硅酸盐玻璃陶瓷的颜色稳定性。材料与方法使用统计软件程序 (G*Power 3.0.10;杜塞尔多夫海因里希海涅大学) 进行功效分析。样本量是根据假设置信水平 = 95% 和研究功效 = 80% 来估算的。根据 Derafshi 等人的研究,与锂二硅酸盐玻璃陶瓷相当的 VMK 95 长石陶瓷的平均 ΔE 在 CHX 中浸泡时为 1.15,在 LST 中浸泡时为 0.90 (8)。根据平均值的比较,并使用最高标准差来确保研究能力,计算每个亚组的样本量为七个。
Diversey提供了一项全面的量表抑制剂和抗议组合,这些组合几乎解决了每种类型的尺度,包括常见的钙尺度以及较少常见的钡,镁,锰,硅酸盐,硅酸盐和硫酸盐尺度以及田径尺度。这些产品包括专有的量表控制化学和唯一配方的抗混蛋,这些抗混蛋采用了多种量表控制机制,包括分散,抑制,晶体失真和隔离。这些有效地减少了工业过程中规模形成的潜力。