本报告是由Kosintr Puongsophol(高级金融部门专家,经济研究与发展影响部[ERDI])和Sree Kartha(顾问[Serd]顾问)领导的,并得到Pitchayaaivunnabood(Serdant,Serdant,Serdant),fonthip Yuthaseee(咨询)Erdi(Erdi)(Erdi)(Erdi)(Erdi)(Erdim)和JASNEN(ERD)和JASEN(咨询)(ERD)和JASEN)。该报告建立在最初由Naeeda Crishna Morgado(高级基础设施专家,气候金融)和Karthik Iyer(资本市场绿色金融专家)起草的早期版本上。该报告的总体生产协调由Marina Lopez Andrich和Criselda Rufino管理。编辑是由Kevin Michael Donahue(Erdi顾问)和Layla Yasmin T. Amar进行的,CBI的校对和页面证明检查。
摘要。计算机视觉和机器学习中的最新技术成就为工业质量控制提供了有希望的解决方案。由于自动解决方案很难在制造过程中集成,因此电池组装过程中的一种常见做法涉及对电池零件的手动调查,该电池零件既效率低下又耗时。我们将重点放在装配线中的一个具有挑战性的生产阶段,该阶段在人类检查不可行的情况下,只能在生产的后期才能检查出来的缺陷。为此,我们提出了一个原位系统,该系统通过在当前生产阶段准确识别异常来自动化质量控制过程并形成缺陷诊断。实施的系统旨在通过使用深神经网络(DNN)来监视电池组装线中的生产线并可视化电池组件中的有缺陷,并检查使用机器视觉系统收集的真实生产样品的缺陷。为了确定特定任务的光学配置,我们对各种最新的(SOTA)DNN体系结构进行了交叉评估,专门研究对象检测。此外,我们探索了复制 - 粘贴数据增强机制,以从少数有缺陷的样本中生成其他培训数据。最初使用平均平均精度(MAP)作为绩效评估的度量标准,对工业试验样本中缺陷的定位进行了验证,然后使用F-SCORE,PROCISION和RESEMES验证了有缺陷和非缺陷样本的分类作为评估指标。
必须仔细抛光,以消除可能传播的磨碎裂纹,从而导致裂缝。图2显示了一个高级的,堆叠的模具包,具有四个模具级别和三个电线环形状,包括模具到模具的粘合。死亡 - 绑定键,可以节省基板空间和成本,同时降低互连长度。虽然这些包装类型当前具有挑战性的线键功能,但新的进步正在提供必要的过程改进。这些水平之间的互连主要是通过电线粘合进行的。只有电线键合提供制造灵活性和能够填补此角色的低成本。当今自动电线键键提供的高级循环控件允许其他技术过程无法提供的灵活性和适应性。具有良好控制的弯曲和扭结状态的线键环的能力已经连续发展了12年以上[4],[5]。1993年授予了第一个工作循环形状专利[6]。这些形状引导了CSP形状的发展。随着在第二个键附近的电线中添加弯曲,旨在提供公共汽车杆间隙,开发了BGA循环。现在,随着多个层次堆叠的模具包的出现,该行业正在推动新的循环高度水平降低。当今的状态债券机可以提供多达20个高级过程循环形状的功能。不断开发其他新循环形状,以适应包装设计要求。实现这些超低环形形状非常最近,已经引入了新的正向环形形状,可以产生<75µm的高度而不会牺牲吞吐量。
直接键合技术不断发展,以应对“更多摩尔”和“超越摩尔”的挑战。自 20 世纪 90 年代绝缘体上硅 (SOI) 技术的出现以来,CEA-Leti 已在直接键合方面积累了丰富的专业知识。从那时起,CEA-Leti 团队一直在积极创新直接键合,以拓宽应用领域。该技术基于室温下两个紧密接触的表面之间的内聚力。然后,范德华力(氢键)和毛细桥产生所需的粘附能。键合后退火将弱键转变为共价键,最终形成一块材料。随着混合键合的出现,直接键合现在不仅解决了基板制造问题,还解决了 3D 互连领域的问题。本文介绍了 CEA-Leti 开发的不同直接键合技术及其在微电子行业和研发中的应用。在文章的第一部分,简明扼要地介绍了直接键合物理学。然后,概述了最先进的键合技术,包括晶圆对晶圆 (WTW) 混合键合、芯片对晶圆 (DTW) 混合键合和 III-V 异质键合。针对合适的应用领域,比较了每种技术的优势、挑战、应用和利害关系。第三部分重点介绍 CEA-Leti 在 ECTC 2022 和 ESTC 2022 上展示的最新混合键合 D2W 结果。讨论了集成挑战以及专用设备开发的作用。最后一部分介绍了潜在的市场和相关产品,并以具有硅通孔 (TSV) 和多层堆叠的芯片为例。
摘要在50年前,当最初将电线拉测试方法添加到MIL-STD 883中时,在方法D的条件D条件D条件D条件D中,键强度(破坏性键拉测试),测试程序和最小拉力值是基于大多数超声楔键合的拉力测试,仅是几个不同直径的超声楔形铝和金线。将原始数据的最小拉力值推断为覆盖金线和铝线的较宽的电线直径范围。自从这种测试方法发布以来,电子产业已经生产了铜超声楔键,大约15年前采用了大约15年前的铜热球键合,甚至开发了银热球球键的利基市场。该行业还建立了特殊债券,例如安全债券,反向债券也称为“球上的针迹”,甚至是多环线和丝带。在所有时间里,均未对2011年方法中的测试程序和最小拉力值进行审查,以确定它们对这些新材料或新型债券的适当性,即使该行业对所有人都广泛提及了测试方法,因此,默认情况下,该行业接受了所有人的使用。2013年底,我领导了JEDEC的JC14.1小组委员会,包装设备的可靠性测试方法,以更新JEDEC JESD22-B116,Ball Bond剪切剪切测试方法,以扩大其范围,以包括Cu Ball Bonds的剪切。工作组花了三年时间来解决必要的技术问题,以确保修订后的测试方法充分解决了铜球债券的剪切,并提出了最低可接受的剪切值。关键词工作组通过图纸和图像制作了一个大大改进的文档,描绘了黄金和铜键的不同剪切失败模式,并添加了几个信息丰富的附件,以帮助执行测试方法。到2018年,显然,电子行业中最常见的电线拉力测试方法都没有在更新其文档以包括CU线债券方面取得任何重大进展。因此,JC14.1工作组同意与JC-13.7小组委员会(新的电子设备技术)共同合作,以在JC14.1下创建一个新的,拉力拉力测试方法文档,该文档将成为JESD22-B116的伴侣。此新文档将使用2011,条件C和D作为基础,但在其范围上扩展以覆盖超声波楔和热球键的铜线键。新的测试方法将描述Ball Pull测试的过程和针脚拉的测试,该过程通过AEC Q006引用了铜键,使用铜(CU)电线互连对组件的资格要求。测试方法还将提供有关如何对当今使用的几种不同键类型进行拉力测试的指导,包括反向键,多环键和堆叠的模具。工作组计划提出JC14.1将在JESD47中引用的铜线键的最小拉值,这是集成电路的压力测试驱动的资格。After the joint working group completes its work, which is targeted for some time in 2022, JC13.7 would then be able to use the output of this working group to update Method 2011 Conditions C & D. This paper will first briefly discuss the updates made to B116 to cover Cu wire bonds, but mainly focus on the work that has so far been completed by the joint working group, including a general outline of the proposed new document, JESD22-B120, Wire Bond Pull Test 方法 。
在过去五年中,中国人民解放军 (PLA) 在采用人工智能进行战斗和支援方面取得了重大进展。中国领导人普遍预计人工智能将开启军事“智能化”,其特点是无处不在的传感器网络、更频繁的机器对机器交战和更快的作战节奏。1 但解放军在人工智能和相关技术方面的进步很大程度上取决于能否继续获得一类特殊的半导体——人工智能芯片——这些芯片用于训练先进的机器学习系统。通过分析解放军部队和国有国防企业在 2020 年授予的 24 份公共合同,本政策摘要对中国军方如何获得这些设备进行了有限但详细的分析。
晶体管诞生 75 周年(从“跨阻放大器”缩写为“跨阻器”再缩写为“晶体管”)。时光飞逝。这是一个非凡的量子物理学小片段。2022 年,晶体管将像病毒一样大小,速度几乎与光速一样快,而且重要的是,它们巧妙地拥有放大这一独特黄金属性,可使微小的电压和电流变得更大。到 2022 年,地球上将有超过 10 24 个晶体管,这得益于摩尔定律所体现的令人瞠目结舌的指数增长模式。晶体管在现代生活中无处不在,无论技术提供者还是消费者是否看到它们。当然,“晶体管”一词应该添加到地球上每个人的词汇表中。同样,从智能手机到汽车、飞机、互联网、GPS,所有现代技术,如果从地球上消失,无一例外都会立即停止运行。事实上,就其对人类文明轨迹的影响而言,人们可以公平地说,晶体管的发明是人类历史上最重要的发现。这话很大胆,但有理有据 [1]。1947 年底,巴丁和布拉顿在贝尔实验室使用点接触装置首次观察到了晶体管的作用。这次固态放大器的演示在历史记录中也是独一无二的,因为我们可以精确地定位它——1947 年 12 月 23 日下午 5 点左右。正是在那一刻,世界发生了不可逆转的变化。新泽西州默里山正下着雪。肖克利不甘示弱,到 1948 年 2 月,“晶体管三人组”中的第三位成员肖克利开发出了晶体管。
摘要:维持基于硅的阳极的物理完整性,该阳极受到骑自行车期间严重变化造成的损害,这是其实际应用的重中之重。通过将纳米座粉与硅片与锂离子电池(LIBS)制造阳极(libs)的阳极(LIBS)的阳极(LIBS)混合,从而显着改善了基于硅粉的阳极的性能。纳米 - 膜粘附在硅片的表面上,并分布在薄片之间的粘合剂中。借助丰富的反应性表面连锁官能团和暴露的纳米原子悬挂键,促进了一致且坚固的固体电解质相(SEI),从而促进了硅片和阳极的物理完整性的增强。因此,电池的高速放电能力和循环寿命得到了改善。sem,拉曼光谱和XRD检查阳极的结构和形态。电化学性能在200个周期后评估了近75%的能力保留,在4 mA/cm 2的测试电流下,最终的特异能力超过1000 mAh/g。这归因于通过在阳极中将纳米座和硅片整合到纳米座中实现的固体电解质相(SEI)结构的稳定性,从而实现了增强的循环稳定性和快速的电荷 - 电荷 - 递送性能。这项研究的结果提出了一种有效的策略,即通过在基于硅 - 弗拉克的阳极中添加纳米座量来实现高循环表现。
