糖尿病大鼠主要组织中硫林基因的表达增加与硝酸盐和亚硝酸盐水平降低有关,这表明对一氧化氮(NO)生物利用度降低的反应反应。在这项研究中,我们假设长期硝酸盐给药(6个月)将降低2型糖尿病大鼠(T2D)大鼠的硫蛋白基因表达。大鼠分配给两组(n = 10):T2D和T2D+硝酸盐,在6个月内以100 mg/L的浓度在其饮用水中接受硝酸盐。收集了主要组织的样品,并用于测量锡林的基因表达,以及硝酸盐和亚硝酸盐水平。Nitrate-treated T2D rats had higher nitrate levels in the soleus muscle (SM) (163 %), stomach (83 %), lung (271 %), pancreas (90 %), aorta (61 %), adrenal gland (88 %), brain (145 %), liver (95 %), and heart (87 %).亚硝酸盐水平也更高。Nitrate decreased sialin gene expression in the SM (0.21-fold, P<0.001), stomach (0.37-fold, P=0.002), liver (0.21-fold, P<0.001), and eAT (0.47-fold, P=0.016) but it increased it in the intestine (1.99-fold, P<0.001), pancreas (2.01-fold, p = 0.006),糖尿病大鼠的肾脏(2.45倍,p <0.001),肺,主动脉,肾上腺,大脑和心脏无效。硝酸盐给药恢复了T2D大鼠组织中锡林基因表达的补偿性增加。但是,这种补偿机制并非所有组织都可以推广。关键字:Sialin,硝酸盐,硝酸盐,2型糖尿病,硝酸盐转运蛋白
Phuong Vuong,Suresh Sundaram,Vishnu Ottapilakkal,Gilles Patriarche,Ludovic Largeau等。蓝宝石底物方向对III-硝酸盐的范德华外观对2D六边形硝酸硼的影响:对光电设备的影响。ACS应用的纳米材料,2022,5(1),pp.791-800。10.1021/acsanm.1c03481。hal-04460183
摘要:本研究量化了使用潮汐流或风力涡轮机的混合系统的技术,经济和环境性能,以及短期电池存储和备用油发电机。该系统旨在部分位于位于英国海峡群岛的奥尔德尼岛上的石油发生器。每天每天提供每天四个发电周期的潮汐涡轮机。这种相对较高的频率循环将油发电机的使用限制为1.6 GWH/年。相比之下,较低的风能时期可以持续数天,迫使风混合动力系统长期依靠备用油发电机,总计2.4 gwh/年(高50%)。因此,假设在此期间,潮汐混合动力系统的燃油量减少了25万英镑/年,或者在25年的运营寿命中取代了640万英镑,则假设此期间的石油成本耗资成本。潮汐和风杂交系统的机油位移分别为78%和67%(与碳排放的减少相同)。对于风混合动力系统,要取代与潮汐混合动力系统相同数量的油,需要另外两个风力涡轮机。电池在高潮汐/风资源时期内存储多余的涡轮能量的能力取决于机会定期排放存储的能量。潮汐混合系统在松弛潮中实现了这一点。高风资资源的时期超过了高潮汐资源的时期,导致电池经常保持充满电,并限制过多的风力。因此,风混合动力系统会减少1.9 GWH/年,而潮汐涡轮机减少了0.2 gwh/年。如果这些利益超过其相对较高的资本和运营支出,那么潮汐型涡轮机减少缩减,燃料成本和碳排放的能力可能会提供在混合系统中实施的案例。
癌症基因组测序已鉴定出数十个突变,在淋巴作用和白血病发生中起作用。验证负责B细胞肿瘤的驱动突变的验证是值得研究的突变体积以及由B细胞发育不同阶段引起的多个突变的复杂方式而变得复杂的。小鼠的正向和反向遗传策略可以提供对人类驱动基因的互补验证,在某些情况下,这些模型的人肿瘤的比较基因组学指导了对人类恶性肿瘤中新驱动因素的鉴定。我们回顾了使用插入诱变,化学诱变和外显子组测序进行的前向遗传筛选的集合,并讨论如何使用人类肿瘤基因组识别插入性诱变筛查中插入性诱变筛查中的高渗透覆盖范围如何鉴定在无法使用人类肿瘤基因组的速度下进行合作的突变。我们还比较了一组从PAX5突变小鼠中进行的独立进行的筛选,该筛网会在人类急性淋巴细胞性白血病(ALL)中观察到的一组常见突变集合。我们还讨论了使用CRISPR-CAS,ORF和SHRNA的反向遗传模型和筛选,以提供高吞吐量的体内证据,以实现致癌功能,重点是使用经体培养细胞的收养转移模型。最后,我们总结了在体内环境中提供候选基因的时间调节的小鼠模型,以证明其编码蛋白作为治疗靶标的潜力。
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。
每个分析仪的特征表1显示了每种仪器的外观和特征。FTIR仪器用中红外光照射样品,并检测到进行定性和定量分析的光吸收程度。可以进行非破坏性测量,因此在FTIR测量后,可以使用另一种仪器再次分析样品。FTIR+ATR可以测量的MPS的大小为几百μm或更多。可以使用几个10秒的测量值对单个塑料进行分析。使用塑料分析仪,一个塑料分析系统,其中包括紫外线受损和受损的塑料库,即使是那些不熟悉分析的塑料库,也可以轻松地测量和分析在环境中降级的MP。py-GC-MS是一种瞬间热分解样品的仪器,通过柱子上的组件将蒸发的热解产物分离,并通过MS检测到它们。可以通过检测特定于每种塑料的热分解产品来进行定性和定量分析。由于测得的样品被热分解,因此无法对其进行分析。
整数分解问题(IFP)被认为是足够大的数学中的一个困难问题。RSA算法的安全性是基于IFP对两个大质数的乘积的难度。因此,为了确保RSA算法的安全性,必须生成足够大的素数。这是密码学(实际上,数字理论)中的一个具有挑战性的问题。在文献中,有确定性的原始测试,例如AKS原始测试,但对于大数量而言并不有效。因此,概率原始测试用于为RSA算法和其他公共密钥加密系统生成较大的质数。基于质量数的公共密钥密码系统经常用于现实生活中的加密,签名和键交换过程。需要足够大的质数来确保某些公共密钥密码系统的安全性。因此,密码学始终需要质数。尚未完全理解的质数的奥秘增加了对数学和计算机科学的兴趣。原始测试是对质数进行的首批研究之一。
背景:在围手术期,尤其是面部整形手术中,通常使用控制性降压麻醉来减少失血并提供理想的手术视野。目的:评估硝酸甘油和瑞芬太尼在原发性开放式鼻整形术控制性降压麻醉中的降压作用。方法:2021 年 6 月至 10 月在伊拉克埃尔比勒的 Rizgary 教学医院进行了一项前瞻性、比较、随机、双盲研究。80 名患者随机分为两组,分别给予硝酸甘油或瑞芬太尼,以将平均动脉压保持在 50 至 60 mmHg 之间。测量并比较心率、收缩压和舒张压、术中失血量、手术视野质量和手术持续时间。结果:硝酸甘油组和瑞芬太尼组的患者均达到了收缩压、舒张压和平均动脉压目标,结果相似。但瑞芬太尼组和硝酸甘油组手术时间有统计学差异(分别为135.3和145.3分钟)。两组心率有明显差异。瑞芬太尼组术中失血量减少,术野质量更高,外科医生满意度明显更高。结论:硝酸甘油和瑞芬太尼持续输注是一种可靠有效的方法,可通过达到目标平均动脉压来实现控制性降压。瑞芬太尼在限制失血、减少手术时间和维持良好血流动力学(尤其是心率)方面优于硝酸甘油。
图4A描绘了具有不同BNNS分数的质量化的BNNS@环氧复合板。在用BNN掺杂之前,环氧树脂板看起来是黄色和透明的。然而,掺杂后,颜色变为白色,随着BNNS浓度的增加,板的透明度会降低。也可以推断出BNN均匀分散在整个环氧树脂中,从而导致均匀的复合材料。图4B说明了用于评估BNN@Epoxy复合板的Terahertz辐射屏蔽有效性的实验设置。实验设置由Terasense源组成,该源以100 GHz的频率发出连续波,其输出功率为80 MW,光电传输天线和THZ-B检测器(Gentec-EO)。这些组件由LabView Software(Gentec-eo)无缝协调,以从源头获得有效的数据采集和处理。值得注意的是,发射的辐射通过由BNNS@环氧复合板制成的衰减器,精心设计,以满足实验的特定要求。
一氧化氮 (NO) 是许多生理过程的分子介质,包括血管舒张、炎症、血栓形成、免疫和神经传递。目前有许多方法可用于测量生物系统中的 NO。其中一种方法是使用 Griess 重氮化反应,通过分光光度法检测生理条件下 NO 自发氧化形成的亚硝酸盐。该方法的检测限为 1.0 µM 亚硝酸盐。Griess 反应还可用于通过硝酸盐催化还原为亚硝酸盐来分析硝酸盐。