致谢 ................................................................................................................ iii 摘要 ................................................................................................................................ iv 插图列表 ................................................................................................................ vii 第 1 章。介绍 ............................................................................................................. 1 1.1 热能存储 (TES) ...................................................................................... 2 1.2 相变材料 ...................................................................................................... 3 1.2.1 聚光太阳能发电厂 ............................................................................. 4 2.文献综述 ............................................................................................. 6 3.方法论 ............................................................................................................. 8 4.讨论 ............................................................................................................. 10 4.1 特性 ............................................................................................................. 10 4.2 结果和分析 ............................................................................................................. 10 5.结论................................................................................................................ 14 参考文献................................................................................................................ 15 个人简介.............................................................................................................. 18
重整 (SMR) 为哈伯-博施法提供 H 2 气作为原料。利用来自可再生技术的电力进行电化学 H 2 生产及其后续利用可以成为“绿色 NH 3 ”的来源。尽管用于绿色 H 2 生产 的聚合物电解质膜 (PEM) 电解器的效率和稳定性已经有了显着发展,但每吨氨至少需要 30.3-35.3 GJ,运行效率甚至高达 60-70%。此外,使用空气分离装置和哈伯-博施环路压缩机供应 N 2 以进行使用绿色 H 2 的哈伯-博施法,每吨氨还需要 2.7 GJ 的 N 2 生产。这些成本目前仍然高于传统的哈伯-博施法(低于每吨氨 30 GJ)。 54,55 在这方面,电化学氮还原 (NRR) 近来引起了全球研究兴趣,以生产 NH 3 作为哈伯-博施法的替代品。迄今为止,该法产量低(低于 3·10·10 mol s 1 cm 2 )且法拉第效率 (FE,低于 10%),受到 NRN 键强度 (941 kJ mol 1 )、N 2 在水溶液中的溶解度差(环境条件下为 0.66 mmol L 1 )以及竞争性析氢反应 (HER) 的挑战。7,8
我们报告了一项系统的研究,该系统研究盐浓度及其阳离子价对模型的混合物的多种等分和转运性能,其混合物具有单价(Lino 3)的硝酸盐(lino 3),二价(mg(no 3)2和Ca(no 3)2和Ca(no 3)2)和(no 3)3)salts。由适当的实验技术确定的这些特性包括密度,声速,折射率,表面张力,电导率和粘度。单粒子动力学和径向分布函数也通过分子动力学模拟进行了分析。在Vogel-Fulcher-Tammann框架中研究了电导率的温度依赖性,我们获得了有效的激活能量,脆弱性指数和Vogel温度。此外,我们进行了高温Arrhenius分析,并计算了电导率和粘度的激活能。最后,获得了不同混合物的分数Walden规则的指数,并分析了系统的离子和脆弱性,证明所有混合物都是亚离子和脆弱的。在其第一个溶剂化壳中建立的由添加盐的阳离子和硝酸盐阴离子组成的长寿命阴离子聚集体的氢键网络的变形以及长寿命的阴离子聚集体的形成是对分析特性产生的深影响。细节分析了盐阳离子的表面电荷密度对溶液的结构和运输特性的作用,并与离子液体极性纳米孔(纳米结构溶剂化)中盐物质的溶剂化有关。2022作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要作为氮循环中的关键中间体,亚硝酸盐参与了多种生物学途径,这些途径调节了海洋中氮的分布和可用性。在贫营养的回旋中,亚硝酸盐在舒适区的底部附近积聚,表现为最大地下,称为原发性亚硝酸盐最大值;而在亚极区域,亚硝酸盐浓度在近地表海洋中升高。到目前为止,控制这种子午线模式的机制尚不清楚。在这里,我们介绍了从亚热带Gyre延伸到北太平洋亚亚北方阵线的亚硝酸盐生产和消费速率的垂直分析曲线。我们的结果表明,在该盆地中亚硝酸盐的纬度分布受浮游植物 - 氮硝基相互作用的变化的影响。在光线充足的贫营养表面中,浮游植物通过耦合释放和重新仿真占主导地位的亚硝酸盐循环;在舒适区的下方,亚硝酸盐氧化剂的光应力减弱会导致快速离职和限制亚硝酸盐。相比之下,在硝酸盐浓度升高的亚极区域中,在同化硝酸盐还原过程中释放亚硝酸盐,而植物浮游生物和硝化剂之间的氨含量则是放松的,从而促进氨氧化。这些过程,以及氨和亚硝酸盐氧化剂的差异光灵敏度,允许亚硝酸盐的净积累。此外,我们证明了尿素氧化在形成原发性亚硝酸盐最大值并平衡海洋硝化步骤时的实质性贡献。我们的发现揭示了对海洋中亚硝酸盐循环和分布的物理生物互动控制,并有助于解散浮游植物 - 微生物相互作用对海洋氮生物地球化学的复杂作用。
背景:体育锻炼和饮食改善是代谢综合征和糖尿病患者的至关重要的非药理策略。这些生活方式的变化减少了慢性氧化应激,并增加一氧化氮(NO)生物利用度。我们的研究集中于无机硝酸盐,在绿叶蔬菜和甜菜根中以高水平发现,它们转化为生物活性号。研究表明,硝酸盐对心血管功能产生积极影响,降低血压,改善血管功能以及增强运动参数(例如线粒体效率和氧利用)。我们假设饮食中的硝酸盐与体育锻炼相结合将为T2D患者的心血管保护提供,患有CVD的高风险。该项目涉及一项临床试验,以研究T2D患者体育锻炼和饮食硝酸盐对心血管健康的综合作用。
背景:绿叶蔬菜(GLV)含有无机硝酸盐,该阴离子对口服微生物组具有潜在的益生元作用。然而,尚不清楚GLV和药理学补充[硝酸钾(PN)是否具有硝酸盐盐会引起对口腔微生物组的类似作用。目标:本研究旨在将GLV与PN补充对高血压个体中口腔微生物组组成和唾液生物标志物的影响进行比较。方法:将70个人随机分配给3个不同的组,以进行5周的饮食干预。第1组以GLV的形式消耗300 mg/d的硝酸盐。第2组食用的药丸,含300 mg/d的PN和低硝酸盐蔬菜。第3组用氯化钾(安慰剂:PLAC)和低硝酸盐蔬菜食用的药丸。在饮食干预之前和之后分析了口腔微生物组组成和口腔健康的唾液生物标志物。结果:GLV和PN组显示出类似的微生物变化,可能依赖硝酸盐,包括奈瑟氏菌,cap虫,弯曲杆菌,弯曲杆菌的丰富度增加,以及治疗后Veillonella,Megasphaera,segasphaera,megasphaera,sectinoryces和eubacterium种类的降低。在GLV组中观察到了Rothia物种的丰度,链球菌,Prevotella,放线菌和摩菌细菌的丰度降低,这可能是硝酸盐独立的。GLV和PN处理增加了唾液pH值,但只有GLV治疗显示唾液缓冲能力和乳酸降低的增加。结论:与PN相比,GLV组中硝酸盐依赖性和独立的微生物变化的结合对改善口服健康生物标志物具有更强的作用。
背景:已经提出口服微生物群将硝酸盐还原为硝酸盐对口腔健康很重要,并导致一氧化氮形成可以改善心脏代谢状况,例如高血压和糖尿病。细菌组成在尺寸斑块中的研究表明,减少硝酸盐的细菌与健康状况有关,但是牙周炎对硝酸盐减少能力的影响,因此尚未评估一氧化氮的可用性。当前研究的目的是查看评估牙周炎和牙周治疗如何影响口服微生物群的硝酸盐降低能力。方法:首先,使用DADA2管道分析了来自不同国家的五项研究的16S rRNA测序数据,以比较减少硝酸盐的健康和牙周炎中的细菌。此外,在非手术牙周治疗(NSPT)之前和之后收集了来自42例牙周炎患者的subgingival斑块,唾液和血浆样本。使用16S rRNA基因的Illumina测序确定了尺寸的斑块细菌组成,并通过qPCR确定了硝酸盐还原生物标志物Rothia的数量。进行了唾液和血浆中硝酸盐和亚硝酸盐的测量,并在体外孵育三个小时后确定唾液硝酸盐还原能力(NRC),并与15个健康个体的NRC进行比较。结果:与健康个体相比,牙周炎患者的尺寸减少硝酸盐细菌均明显低(所有五个数据集中的p <0.05)。NSPT后,降低牙菌斑中硝酸盐还原细菌的增加(p <0.05),并与牙周炎相关细菌呈负相关(P <0.001)。
摘要 在美国田纳西州橡树岭,Rhodanobacter 是受高浓度硝酸盐和铀污染的蓄水层中的优势菌属。原位刺激反硝化已被提出作为修复硝酸盐和铀污染的潜在方法。在 Rhodanobacter 种中,据报道 Rhodanobacter denitri filcans 菌株具有反硝化能力并含有丰富的金属抗性基因。然而,由于这些菌株缺乏诱变系统,我们对低 pH 抗性和在污染环境中占主导地位的能力的潜在机制的理解仍然有限。在这里,我们在两株 R. denitri filcans 菌株中开发了一种无标记缺失系统。首先,我们优化了 10 株 Rhodanobacter 菌株的生长条件,测试了抗生素抗性,并确定了合适的转化参数。然后,我们在 R. denitri filans 菌株 FW104-R3 和 FW104-R5 中删除了编码尿嘧啶磷酸核糖基转移酶的 upp 基因。所得菌株被命名为 R3_ D upp 和 R5_ D upp,并用作宿主菌株,以 5-氟尿嘧啶 (5- FU) 抗性作为反选择标记进行诱变,以产生无标记缺失突变体。为了测试开发的方案,在 R3_ D upp 和 R5_ D upp 宿主菌株中敲除了编码硝酸盐还原酶的 narG 基因。正如预期的那样,narG 突变体无法在以硝酸盐为电子受体的缺氧培养基中生长。总体而言,这些结果表明,同框无标记删除系统在两种 R. denitri ficans 菌株中有效,这将有助于未来对这些菌株进行功能基因组研究,进一步了解 Rhodanobacter 种中存在的代谢和抗性机制。
摘要:由于量子技术在量子技术中的潜在应用,六角形氮化硼(HBN)的颜色中心已成为经过深入研究的系统。已经制造出了各种各样的缺陷,但是对于许多缺陷而言,原子来源仍然不清楚。缺陷的直接成像在技术上非常具有挑战性,特别是因为在衍射有限的位置,有许多缺陷,然后必须识别出光学活动的缺陷。另一种方法是将光物理特性与理论模拟进行比较,并确定哪个缺陷具有匹配的签名。已经证明,单个属性不足,导致错误弥补。在这里,我们发布了一个基于功能理论的密度可搜索的在线数据库,涵盖了HBN缺陷的电子结构(257个三重态和211个单元配置),以及它们的光物理指纹(激发态态寿命,量子效率,过渡偶极时间和方向和方向,极化可见度等)。所有数据都是开源的,可以在https://h-bn.info上公开访问,并且可以下载。可以输入实验观察到的缺陷签名,数据库将输出可能的候选物,可以通过输入尽可能多的观察到的属性来缩小候选物。数据库将不断更新,并具有更多的缺陷和新的光物理属性(任何用户也可以专门要求)。因此,数据库允许一个人可靠地识别缺陷,还可以研究哪些缺陷对于磁场传感或量子存储器应用可能有希望。
成分糖,富含粉的粉(小麦粉,烟酸,降铁,硫胺素单硝酸盐,核黄素,叶酸),谷物碎屑(浓粉(富集面粉[小麦粉,烟酸,降低铁,硫胺素,硫胺素单硝酸盐,单硝酸盐),单硝酸盐,单硝酸盐,核酸果酸,核酸酸酯,叶酸] ,黄油(巴氏杀菌奶油,天然风味),大豆油,水,甘蔗糖蜜,肉桂。