3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 3 3 1 1 2 1 1 1 丙酮 1 2 1 1 3 1 3 3 苯乙酮 2 2 2 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 4 2 2 2 3 3 1 3 乙炔 3 2 1 1 1 1 1 2 空气 (100 °C) 1 2 1 1 1 1 1 空气 (150 °C) 1 2 1 1 3 3 1 3 空气 (200 °C) 1 2 1 1 3 3 1 3 乙酸铝4 4 4 4 2 1 3 2 溴化铝 4 4 4 4 1 1 1 1 氯化铝(10%) 3 3 3 3 1 1 1 1 氯化铝(100%) 3 2 2 2 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 3 2 2 1 1 1 1 铝盐 4 4 4 4 1 1 1 1 硫酸铝 2 3 2 3 1 1 1 1 明矾(NH3-Cr-K) 4 4 4 4 1 1 3 1 氨(无水) 3 2 1 1 2 1 3 1 氨(冷,气体) 3 2 4 1 1 1 3 1 氨水(热、气态) 3 2 4 1 3 2 3 2 碳酸铵 3 2 3 3 3 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 3 1 2 3 1 3 1 硝酸铵 3 3 1 1 1 1 4 1 过硫酸铵溶液 3 3 1 2 3 1 4 4 磷酸铵(一元、二元、三元) 3 3 3 2 1 1 4 1 铵盐 4 4 4 4 1 1 3 1 硫酸铵 3 3 2 3 1 1 3 1 硼酸戊酯 4 4 4 4 1 3 1 1 戊基氯 4 2 1 1 4 3 1 2 戊基氯萘 4 4 4 4 3 3 1 3 戊基萘 4 4 4 4 3 3 1 3 动物油(猪油) 2 2 2 2 1 2 1 2 Aroclor 1248 2 3 3 3 3 2 1 3 Aroclor 1254 2 3 3 3 3 2 1 3 Aroclor 1260 2 3 3 3 1 4 1 1 芳族燃料 -50% 4 4 4 4 2 1 1 3 砷酸 3 3 1 1 1 2 1 1 沥青 3 3 1 1 2 3 1 2 ASTM 油,n° 1 1 1 1 1 1 3 1 1 ASTM 油,n° 2 1 1 1 1 1 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 3 ASTM 油,编号 4 1
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 4 4 4 4 1 1 1 2 丙酮 3 3 1 1 2 1 1 1 苯乙酮 1 2 1 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 2 2 2 2 3 1 3 3 乙炔 4 2 2 2 3 3 1 3 空气 (100 °C) 2 3 1 1 3 3 1 3 空气 (150 °C) 4 4 4 4 1 3 1 3 空气 (200 °C) 1 1 1 1 3 1 3 3 乙酸铝1 2 1 1 2 2 1 2 溴化铝 1 2 1 1 3 3 1 3 氯化铝(10%) 4 4 4 4 2 1 3 2 氯化铝(100%) 4 4 4 4 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 2 2 2 1 1 1 1 铝盐 1 2 1 1 1 1 1 1 硫酸铝 3 3 3 3 1 1 1 1 明矾(NH3-Cr-K) 3 2 1 1 1 1 1 2 氨(无水) 3 3 2 2 1 1 1 1 氨(冷,气体) 3 2 1 1 2 1 3 1 氨(热、气态) 4 4 4 4 1 1 3 1 碳酸铵 4 4 4 4 1 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 2 4 1 1 1 3 1 硝酸铵 3 2 4 1 3 2 3 2 过硫酸铵溶液 3 2 3 3 3 1 1 1 磷酸铵(一元、二元、三元) 3 3 2 3 1 1 1 1 铵盐 3 3 1 1 1 1 4 1 硫酸铵 3 3 1 2 3 1 3 1 硼酸戊酯 3 3 1 2 3 1 4 4 氯化戊酯 3 3 3 2 1 1 4 1 戊基氯萘 4 4 4 4 1 1 3 1 戊基萘 3 3 2 3 1 1 3 1 动物油(猪油) 1 1 1 1 2 3 1 2 Aroclor 1248 4 4 4 4 1 3 1 1 Aroclor 1254 4 2 1 1 4 3 1 3 Aroclor 1260 4 4 4 4 3 3 1 3 芳烃燃料 -50% 4 4 4 4 3 3 1 3 砷酸 2 2 2 2 1 2 1 2 沥青 2 3 3 3 3 2 1 3 ASTM 油,n° 1 3 3 1 1 1 1 1 1 ASTM 油,n° 2 3 3 1 1 2 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 1 ASTM 油,编号 4 1
1995年4月19日,阿尔弗雷德·穆拉(Alfred P. Murrah)联邦大楼遭到海湾战争资深人士蒂莫西·麦克维(Timothy McVeigh)的轰炸,使用硝酸铵,赛车燃料和其他化学药品的鸡尾酒。这项研究旨在分析麦克维的生活,以确定他是否表现出精神病行为。使用间接人格评估来分析麦克维。IPA通过对自己和周围的人的访谈来分析个人的无意识和有意识的感觉/动机。由于麦克维(McVeigh)于2001年6月执行,因此所使用的主要材料来源是Lou Michel和Dan Herbeck收集的一系列采访录像带。这些访谈被转录为麦克维的传记,《美国恐怖分子:蒂莫西·麦克维和俄克拉荷马城轰炸》。McVeigh的行为以及声音中情绪的变化被用来完成这项评估。这项研究希望进一步应用IPA方法与已故的方法有关
十九世纪,不断发展的化学科学开始创造具有爆炸性质的分子种类。这些分子不仅含有可用作燃料的原子,即碳和氢,还含有与硝酸盐类似的硝基 (NO 2 )。硝基化合物有三种基本结构类型:含 C-NO 2 基团的硝基化合物、含 C-O-NO 2 的硝酸酯和含 N-NO 2 的硝胺。含有硝基的分子是良好的炸药候选者。硝基为燃烧提供必需的氧气,此外,氮原子转化为氮气 (N 2 ),从而增加了释放气体的体积。硝化分子的出现为具有更佳能量性质但能够产生爆炸的炸药开辟了道路。然而,在十九世纪初,研究人员将爆炸的概念应用于炸药分子,其中一些分子已为人所知近 100 年。最早被开发成军械填充物的是苦味酸(2,4,6-三硝基苯酚),要么是纯物质,要么与二硝基苯酚混合,以降低混合物的熔点,有助于熔融铸造 1)。与此同时,炸药 2,4,6-三硝基甲苯 (TNT) 也被开发出来,并被发现优于以苦味酸为基础的炸药。TNT 不仅作为纯填充物获得了巨大成功,而且在第一次世界大战结束时,作为与硝酸铵的混合物也获得了成功
12次在堪萨斯州在2021年在堪萨斯州抓住的12次实验室的甲基苯丙胺实验室事件的总数归类为一锅甲基苯丙胺实验室。使用硝酸铵,氢氧化钠,水,石油馏出物和金属矿物质的一锅生产方法将伪麻黄碱转化为甲基苯丙胺。这种制造方法通常在小型塑料瓶中完成,是便携式的,可以很容易地隐藏。在2021年抓住了使用红磷和氢碘酸产生甲基苯丙胺的一个红磷实验室。使用无水氨和锂或金属产生甲基苯丙胺的无水氨实验室。在2021年扣押的四个实验室是未知类型。执法机构向El Paso情报中心(EPIC)报告的信息表明,2021年在美国占领的大多数甲基苯丙胺实验室都是一锅实验室。2021年在堪萨斯州抓住的十二个实验室比2020年(大流行第一年)的历史最低点增加了。美国各地的实验室数量继续下降。基于报告给Epic的数据,国内甲基苯丙胺秘密的数量
Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。 框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵框16765-3574 Tehran,I.R。伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。通过将钾变成硫铵的钾产量差异。发现产品的产率和纯度都从磺胺钾开始。关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。该化合物的潜在实际用途是替代高氯酸铵
A533B 不锈钢,464 氢气吸收,5 醋酸盐,59,60 酸性燃烧残留物,104 活性滑移面,88 铜的吸附原子,78 氢气吸附,5 AGA 管道研究委员会,152-153 空气,6-7,319,335 铝合金中的开裂,334,374 在负载试验中,007,303,347 在超级合金测试中,303,319 航空发动机,103 AISI 41XX 钢,137 AISI 431 钢,505,506 AISI 4340 钢,5-7,103 AISI 不锈钢,266 合金 825,505,506 合金,5,31铜金,76,78,86 在酸性环境中,136 钢,5,7,136 铝合金,334,374,393,2024,348 2024 T351,348,374 7075 T6,348,393 7075 T651,334,393,395 7075 T7351,334 铝锂合金,334 美国石油协会 (API) 规范 5AC,137 氨溶液和黄铜,88 氯化铵,103 硝酸铵,104 阳极极化,76 API 5LB 钢,170 API 5LX X65 钢,170 API 规范 5AC,136-7水环境(另见地下水、海水、溶液化学和水),103,495 ASME 锅炉和压力容器规范,第 XI 节,附录 A,283,463
1 简介 1.1 目的 本指南旨在概述处理散装爆炸物的场地和设备的最低要求。这些指南将用于评估许可证或证书申请的可接受性,并在检查期间评估场地。这些指南涵盖第 1 部分工厂(有和没有洗车场的工厂,以及有临时结构的工厂)、第 1 部分证书(卫星场地证书,包括用于演示的卫星场地证书)、第 2 部分工厂、硝酸铵和燃料油 (ANFO) 的机械和非机械混合证书以及试验许可。要制造散装爆炸物并交付散装爆炸物,公司必须根据许可证或证书经营。本文件并未提供所有详细信息。其他联邦、省或市管辖区可能会有意见(参见《爆炸物法》第 29 条)。一般而言,作为最低限度,场地和运营应符合化工厂或类似工业场地的良好标准。公司应了解并维护良好管理的原则。 “必须”和“将”暗示强制性要求。每当出现“应该”或“可以”时,公司可以选择遵循此类指令,但必须准备好捍卫其不遵守这些指令的决定。 1.2 意图 这些指南旨在用作满足要求的指南
(c)为本章管理和执行提供资金。14502。秘书应执行本章,并采用和执行与制造,保证,标签和分发有关的规定,以报告和进行检查的方式,并在秘书确定执行本章必要的必要条件下对吨位支付吨位。这些法规的副本应在收养本章许可的每个人后立即邮寄。任何被许可人未能收到法规副本的副本不是违反法规的辩护。14502.1。秘书应通知每位制造,分发或出售硝酸铵的许可人,如第14512.5节所定义的,其义务根据第14612.5条的规定维护记录,并通知秘书,以通知秘书的记录。14503。董事根据本章收到的任何款项应支付给国家财政部,以归功于食品和农业基金会的贷方,仅用于管理和执行本章。14504。秘书应准备与本章有关的经营支出和收入的年度陈述,并应在财政年度终止后尽快将其提交给董事会审查。应根据要求提供任何感兴趣的人的副本。14505。源自市政污水污泥的农产品应根据本章的施肥材料来监管,当在一般贸易中使用时,这些产品不受根据
从科学的角度来看,热交换和热吸收可以产生冷。[12]主动热交换通过将热量从高度能量驱动(例如,电子)驱动的低温区域转移到高温区域,而被动热交换在没有外部能量输入的情况下通过将热量从高温区域转移到低温区域,而天空冷却是一个例子。[13–18]然而,它的被动辐射冷却的性质不可避免地使其具有较低的固有热力学冷却功率天花板为≈160w m -2,[19],因此需要对其应用进行大型土地足迹。另一方面,热吸收通过利用诸如溶解等吸热过程(例如溶解)来产生冷。[20,21]基于溶解的冷却过程采用特定的化学化合物,例如硝酸铵,可在溶解过程中吸收热量。但是,它需要大量能量才能从其溶液中回收溶解的化学物质。活跃的热吸收是迄今为止在国内,商业和工业活动中最常用的冷却过程,这主要是由于其高冷却能力。[22]例如,基于压缩的冷却(例如,空调和制冷)通过通过气体压缩蒸发制冷剂和循环冷藏剂会产生冷,从而实现了卓越的能量效率和性能的系数(COP> 2)。[23]但是,这是非常密集的,导致冷却是全球电力消费者和温室气体发射极中很大一部分。[24]