如何缓解加强针注射后的副作用?多喝水,轻装上阵,以减轻不适或发烧。您可以服用非处方药,如布洛芬或对乙酰氨基酚,以缓解副作用。但是,不建议在接种疫苗前服用这些药物来预防副作用,因为尚不清楚这些药物是否会影响疫苗的效果。
如果我已经感染过 COVID-19,还需要接种疫苗吗?是的。专家表示,对于任何感染过 COVID 的人来说,在某个时候接种疫苗都是安全的,甚至可能是有益的。尽管人们认为感染过病毒的人至少具有一定的天然免疫力,但现在还无法知道这种免疫力能持续多久。建议感染过 COVID 的人在感染后等待大约 90 天再接种疫苗。如果我已经接种了疫苗,我还需要戴口罩吗?是的,有两个原因。首先,疫苗的保护作用需要一段时间才能发挥作用。事实上,在第二剂接种后大约两周内,你仍然容易感染 COVID。其次,即使你完全接种了疫苗,你仍有可能携带病毒。虽然你可能不会生病,但你可能会打喷嚏或将病毒呼到别人身上。研究人员希望接种疫苗的人不会传播病毒,但还需要更多的研究。所以,你仍然需要在公共场所戴口罩。
本文所包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请或要获得的结果。这些信息通常基于实验室的小型设备,不一定表明最终产品性能或可重现性。提出的配方可能没有进行稳定性测试,仅应作为建议的起点。由于在处理这些材料时商业上使用的方法,条件和设备的变化,因此没有对产品适用于披露的申请的适用性。全尺度测试和最终产品性能是用户的责任。Lubrizol Advanced Materials,Inc。不承担任何责任,并且客户对除Lubrizol Advanced Materade,Inc。的直接控制外的任何用途或处理任何材料都承担所有风险和责任。卖方不对明示或暗示的担保,包括但不限于对特定目的的适销性和适合性的隐含保证。本文中没有任何包含在未经专利所有者许可的情况下练习任何专利发明的授权,也不应将其视为诱因。Lubrizol Advanced Materials,Inc。是Lubrizol Corporation的全资子公司。
•暴发:特定区域特定疾病的情况突然增加。本课程确定了全球健康状况的全球健康概念,并为制定统一的全球健康政策,实践,组织和资源而做出了努力。本课程还强调了各种关注全球卫生努力的组织,包括世界卫生组织(WHO),联合国国际儿童紧急基金(联合国儿童基金会),全球卫生委员会和卫生合作伙伴。首先要求学生考虑健康问题不仅会影响个人,而且会影响整个社区,甚至会影响整个社区。提出了一个问题:“当您听到'社区''一词时会想到什么,并让学生默默地反思或转向伴侣并讨论他们的答案2分钟。选择一些学生分享他们对“社区”的定义的想法,鼓励他们考虑地点,规范,宗教,价值观,习俗或身份等方面。解释说,在本课程中,我们将“社区”定义为具有共同特征的国家(例如一个国家)。
1实验室“微生物:génomeand Envorys”,CNRS,Clermont Auvergne大学,法国F-63000 Clermont-Ferrand; thania.sbaghdi@uca.fr(T.S.); anne.mone@uca.fr(a.m.); hicham.el_alaoui@uca.fr(H.E.A.)2洛桑大学洛桑大学基本微生物学系,瑞士洛桑1015号; julian.garneau@unil.ch(J.R.G.); simon.yersin@unil.ch(s.y。)3 LALLEMAND SAS,19 Rue des Briquetiers,BP 59,Cedex,F-31702 Blagnac,法国; fchaucheyrasdurand@lallemand.com 4微生物学消化环境和Santé,inrae,Clermont Auvergne大学,F-63122 Saint-gen saint-GenèsChampanelle,法国5 Apimedia,Bp22 Print,F-74371 Annecy,France,France; bocquetmichel@hotmail.com 6高级生物科学研究所,CR UniversitÉgrenobleAlpes,Inserm U1209,CNRS UMR 5309,F-38000 Grenoble,法国; philippe.bulet@biopark-champs.org 7平台Biopark Archamps,ArchParc,F-74160法国Archamps,法国 *通信:nicolas.blot@uca.fr(N.B. )); frederic.delbac@uca.fr(F.D.);这样的。: +33-(0)4-73-40-74-57(N.B.); +33-(0)4-73-40-78-68(F.D.)
实用产品开发。锂离子电池已成为替代镍氢电池的主要候选者,然而,对续航时间更长、充电速度更快、续航里程更远的电动汽车的需求,使得后锂离子电池材料、结构和系统的研究变得多样化[1-3]。一种潜在的、有吸引力的替代品是固态电池;其前提是用固态离子导体取代锂离子电池中常见的有机液体电解质[4,5]。宽电化学窗口、不可燃性以及实现锂金属阳极的潜力是将固态电池推向下一代储能前沿的优势。然而,要与传统的液体电解质竞争,实现高锂离子电导率是一个巨大的挑战。固态离子领域发展迅速,各种能够在中等温度下实现快速锂离子传输的锂离子导体正在实现下一代电化学存储。聚合物、凝胶、熔融盐和陶瓷电解质在集成到实际设备中时各有优势,也面临挑战;然而,硫化物基电解质已成为有力竞争者,其电导率可匹敌甚至超越有机液体电解质 [6]。LGPS、Li 7 P 3 S 11 玻璃陶瓷、银锗石 Li 9.54 Si 1.74 P 1.44 Cl 0.3 是表现出优异 Li + 电导率的电解质例子,尽管在电化学窗口和抵抗锂金属强还原电位的能力方面结果不一[5,7-9]。Sakamoto 等人 [10] 通过拉曼光谱证明了硫代磷酸锂 Li 3 PS 4 在与对称 Li-Li 电池循环后还原形成 Li 2 S 和 Li 3 P 产物,这已通过原位 XPS 实验证实并通过 DFT 计算进行预测 [11,12]。研究表明硫化物电解质还会与高压正极发生反应,形成的薄界面足以降低电池容量和循环能力。为实现该技术,用 LiNbO 3 进行表面改性可以阻碍化学交叉扩散并减少空间电荷层的锂损耗 [13]。高能正极研究对于实现全固态锂电池至关重要。硫作为高能量密度正极的出现是正极、电解质和隔膜技术的产物,旨在实现高倍率下的可逆容量。硫的优点是理论容量高(1675 mAh g -1 ),这平衡了低平均正极放电电位(~2.0 V),从而产生高理论能量密度(~2600 Wh kg -1 )。然而,必须克服重大挑战,例如硫和多硫化物溶解在电解质中,有机电解质的持续分解以及锂金属的树枝状生长。其结果是无法在长时间循环过程中保持容量,而解决方案则是采用精妙的材料设计和工程来封装和保护活性材料。碳、聚合物和隔膜技术在实现高负载和可持续硫正极方面都发挥了至关重要的作用 [14-16]。或者,更换有机液体电解质可以提供一条多方面的途径来解决持续的 SEI 形成和多硫化物溶解问题,因此固态 Li-S 电池有可能拥有出色的循环寿命。事实上,利用固体电解质已显示出无需封装活性材料就能提高容量保持率,这为高负载活性材料以增加能量密度并降低成本铺平了道路 [17-20]。为了实现这样的改进,阐明放电机制将加深对电化学反应的理解,并为进一步改进扩大电池电极所需的设计和工艺提供见解。在这里,我们通过分离碳、固态电解质(非晶态 Li 3 PS 4,LPS)和硫/硫化锂这三种基本成分的反应性,研究了固态硫阴极复合阴极的制备过程如何影响电化学放电。研究人员最近意识到
引言为了满足对电动汽车续航里程不断增长的需求,锂硫(Li-S)电池受到越来越多的关注,其理论能量密度(2600 Wh·kg -1 )[1]远高于传统锂离子电池(约 400 Wh·kg -1 )[2]。然而,其商业化应用仍然存在一些障碍:多硫化锂(LiPSs)引起的穿梭效应,Li 2 S的分解能大,S和Li 2 S的绝缘性导致的循环寿命较差,正极活性成分利用率低,锂电极钝化[3,4],倍率性能差[5]以及循环过程中体积变化剧烈[6]。为了解决上述问题,一系列碳基材料和金属基材料以硫为主体材料,通过物理或化学作用限制LiPSs。碳基材料包括多孔碳 [7-9]、空心碳 [10-12]、木质碳 [13]、碳纳米纤维和碳纳米管 [14]。金属基材料包括 MXene [5] 和过渡金属氧化物/氮化物/硫化物 [15-19]。
致谢:本信息图由美国卫生与公众服务部 (HHS) 疾病控制与预防中心作为合作协议的一部分提供支持。内容为作者所有,并不一定代表官方