摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。
锂离子电池因具有较高的能量密度和较长的循环寿命,被广泛应用于便携式电子设备、电动汽车和大型储能装置中。目前,商业化锂离子电池主要采用循环稳定性高的插层型锂储能材料作为正极和负极材料。然而,插层型正极材料如LiFePO 4 、LiMnO 4 、LiCoO 2 等理论容量低(< 200 mAh·g−1),不能满足日益增长的高能量密度需求。以非插层型锂储能材料为代表的锂硫(Li-S)电池具有很高的能量密度(2600 W·h·kg−1),是目前商业化锂离子电池的8倍以上[1,2],被认为是最有前途的高能量密度二次电池之一。硫及其完全锂化状态的 Li 2 S 均可用作 Li-S 电池的活性正极材料。硫基复合正极应与锂金属或含锂负极结合。低电子和离子电导率是元素硫的固有特性,
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除氢化锌,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的低吸收和散射以及高光学质量,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除锌氢化物,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的吸收和散射率低,光学质量高,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
前言 本毒理学概况是根据美国有毒物质与疾病登记署 (ATSDR) 和环境保护署 (EPA) 制定的指导方针* 编写的。原始指导方针于 1987 年 4 月 17 日刊登在《联邦公报》上。每份概况将根据需要进行修订和重新发布。ATSDR 毒理学概况简明扼要地描述了其中描述的这些有毒物质的毒理学和不良健康影响信息。每份同行评审的概况都会确定和审查描述物质毒理学特性的关键文献。其中还介绍了其他相关文献,但描述不如关键研究详细。本概况并非详尽无遗,但参考了更全面的专业信息来源。概况的重点是健康和毒理学信息,因此每份毒理学概况都以一份公共卫生声明开头,该声明以非技术语言描述物质的相关毒理学特性。公共卫生声明之后是有关人类显著接触水平以及(如果已知)显著健康影响的信息。确定物质健康影响的信息是否充分在健康影响摘要中描述。ATSDR 确定了对保护公众健康具有重要意义的数据需求。每个概况包括以下内容:(A)检查,
4.1 识别现有或潜在腐蚀问题的方法 4-1 4.2 识别潜在问题区域 ........: ..............4-1 4.3 初步检查 ................................4-4 4.4 腐蚀测量 ' 4-14 4.5 比较测量值和预测值腐蚀 .................4-19 4.6 参考文献 4-25
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
摘要:本研究考察了胡安德福岛(东北太平洋)两个高温硫化物建筑物的热液喷口物种与其周围物理和化学环境之间的关系。在 1993 年和 1995 年的两次遥控潜水器 (ROV) 潜水计划中,共进行了 78 次扫描,获得了视频图像和现场温度和化学信息。环境和动物群数据的统计分析揭示了热液物种的异质分布(对应分析),并证明了当地物理和化学条件对物种分布的显著影响(典型对应分析)。结果证实了硫化氢对喷口物种分布的重要性,以及可见水流强度和基质类型等复杂变量的重要性。由于物种分布的变异中不到 30% 可以通过测量的现场因素来解释,我们最后强调需要评估其他未测量的环境因素的影响,例如溶解氧、氮化合物、食物供应和生物相互作用。