●此演示文稿可能包括前瞻性语句。前瞻性陈述仅是预测,并且受风险,不确定性和假设的约束,这些风险和假设超出了Centaurus金属的控制。这些风险,不确定性和假设包括各个国家和地区的商品价格,货币波动,经济和金融市场状况,环境风险以及立法,财政或监管发展,政治风险,项目延迟或进步,批准和成本估算。实际值,结果或事件可能与本介绍中表示或暗示的值大不相同。鉴于这些不确定性,警告读者不要依赖前瞻性陈述。本演示文稿中的任何前瞻性陈述仅在此演示文稿发行之日发言。遵守适用法律和ASX上市规则的任何持续义务,Centaurus Metals不承担任何义务,以更新或修改本演示文稿中的任何信息或任何前瞻性陈述,或任何此类前瞻性陈述所基于的事件,条件或情况的任何变化。
抽象的氢硫(H 2 s)是三个已知的气信号传感器之一,由于报道了其潜在的生理作用,因此H 2 S上的文献一直在增加。h 2 s参与了血管舒张,神经传递,血管生成,炎症和预防缺血 - 再灌注损伤等过程,其机制尚待进一步研究。目前,蛋白质翻译后加工的作用已被视为H 2 S参与多种生理过程的可能机制。当前的研究表明,H 2 s参与了蛋白质的S-磺化,磷酸化和S-硝基化。本文着重于涉及H 2 S对生理和病理过程的蛋白质修饰的影响,期待为后续研究提供指导。ª2022作者。Elsevier B.V.的发布服务代表KEAI Communications Co.,Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/by by/4.0/)。
从经济,技术和环境的角度来看,从煤炭资源中清除硫,近年来受到了越来越多的关注。目前的工作研究了化学(Meyers和Molten腐蚀性浸出(MCL))和生物学方法的能力。在90°C的90分钟内,在硫酸铁浓度为1 m的过程中,在90°C,61.78%的灰分和82%的黄铁矿和51.35%的总硫从TABAS煤中分别去除。还研究了MCL方法。因此,基于苛性钠 /煤比的MCL实验条件2,浸出时间为60分钟,恒温为180°C,71.82%的灰分,88%的黄铁矿硫和57.85%的总硫含量中的57.85%分别从TAPAS煤中清除。此外,使用嗜酸铁和氧化氧化的中性细菌的混合培养塔巴斯煤的生物硫化。研究了时间,细菌培养基,固体/液体(S/L)的影响,并研究了细菌的缺失,并根据结果,时间是最重要的参数。因此,在20天内,从塔巴斯煤中除去了灰硫的68.98%,黄铁矿硫的92%和72.43%的总硫。
熔融盐电池,称此称为热电池,在为广泛的防御应用提供按需电力方面起着至关重要的作用。尽管热电池的制造和认证仍然是一项复杂,艰巨的努力,但较长的存储寿命和令人难以置信的热电池的功率密度将它们定位为无数系统中的首选电源。引入了改进的阴极材料,钴二硫化物(COS 2),已扩大了热电池的性能状态,并产生了更多的用例。然而,改进的阴极材料的结构提出了一些制造挑战,这些挑战阻碍了许多高量生产应用的采用。在当前的工作中,概述了一些进步,这些进步允许使用新颖的COS 2 Catholyte材料继续准时交付高量热电池。Enersys Advanced Systems Inc.(EAS)(EAS)通过提供量身定制的粒径分布,连续的颗粒制造技术和半自动装配设备,证明了使用Superior Cos 2电化学解决方案提供高量生产要求的能力和能力。关键字热电池;高体积生产;钴二硫化物;阴极;电化学细胞
这项研究研究了COS 2 /PPY纳米复合材料作为超级电容器的电极材料的有效性。我们在镍泡沫上作为底物进行了简单有效的一步水热制造。精确表征后,使用各种技术(例如环状伏安法(CV),Galvanostatic放电(GCD)和电化学阻抗光谱(EIS)进行电化学研究。结果显示了合成电极的出色电化学行为,其特异性电容为605.2 c g -1,电流密度为1 a g -1。此外,还获得了相当大的电容保留率(5000个周期后约90.9%)。接下来,使用准备好的电极和活性碳(AC /Ni泡沫)作为阴极和阳极,将不对称的超级电容器(Acc /ni泡沫)进行重新开发。该设备的高特异能量为88.07 WH kg -1,显着功率为4.95 kW kg -1
化石燃料的生物硫化是一种有前途的方法,可用于治疗酸油,因为它的环境友好性和摆脱顽固的有机硫化合物的能力。在这项研究中,许多类型的微生物,例如鲁otropha,赤霉菌,红oc虫,酸硫胆杆菌的铁氧化物和酸硫胆杆菌的硫代基硫酸脂蛋白,用于酸化的重型原油(硫含量为4.4%)。另外,通过向PTCC 106提供了从原油和油浓缩物中分离出的菌落。对各种官方和著名的培养基进行了显着评估,例如(PTCC 2,PTCC 105,PTCC 106(9K),PTCC 116,PTCC 116,PTCC 123,PTCC 132),无硫MG-MEDIUM,碱盐培养基和矿物质盐。发现,从微生物和SFM中选择了红oc子和酸硫胆杆菌,而SFM和培养基PTCC 105被选为分别等于47和19.74%的原油的较高脱硫效率。生物疾病取决于处理过的液体,靶向硫化合物,因为这些化合物代表了环境状态(营养素的数量和类型),以及生物营养者的类型是微生物是败血症,败血症,半疗法或无菌性的。最佳操作条件是通过使用确定的方法(例如混合速度,温度,表面活性剂剂量,OWR,酸度)设计的。即使生物工程获得的效率,此处获得的最佳效率也比以前的努力要好。生物盐是与BDS的同时过程。
有序二维共价有机骨架(2D-COF)的原子级精确设计机会与非晶态线性聚合物、交联聚合物和超支化聚合物完全不同,从而可以前所未有地操纵构成含杂原子(N、S 和 O 等)功能团的初级和更高级排列。[1] 这类新兴的有序聚合物材料表现出有机亚基的网状生长,这些亚基通过强共价键(席夫键形成、[2] 环硼氧烷键、[3] C C 键形成、[4] 酰胺键、[5] 吩嗪键、[6] 苯并噻唑键、[7] 二恶英、[8] 二硫代丙烷键[9] 等)相互锁合,通过相邻层之间的 π – π 相互作用配置成三维阵列,并且对组成和性能具有良好的预测。结构的预测是
使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
使用硫化物固体电解质 (SE) 的全固态电池 (ASSB) 是下一代能源装置的有吸引力的候选者,其寿命比使用有机溶剂的液态锂离子电池 (LIB) 更长。众所周知,即使在干燥室等环境中,硫化物 SE 暴露在潮湿环境中也会导致离子电导率降低并产生有毒的硫化氢。然而,暴露在潮湿环境中对 ASSB 电池性能的影响迄今为止尚未完全阐明。为了填补这一知识空白,本文描述了水分对硫化物 SE 未暴露或暴露在露点为 -20°C 的干燥室模拟空气中的 ASSB 正极耐久性的影响的研究。在电池耐久性评估之后,对正极进行了飞行时间二次离子质谱 (ToF-SIMS) 测量,并利用暴露的 SE 观察了电池中的特征降解模式。
保护定律可以限制孤立的量子系统中的纠缠动态,这体现在更高的rényi熵下。在这里,我们在用U(1)对称性的一类远程随机电路中探索了这种现象,其中可以从扩散到超级延伸到超级开发。我们揭示了不同的流体动力方案根据s(t)∝ t 1 / z在渐近纠缠生长中反映自己,其中动态运输指数z取决于跨越距离r的概率∝ r -α。对于足够的小α,我们表明流体动力模式的存在变得无关紧要,因此S(t)在具有和没有保护定律的电路中的行为相似。我们用u(1) - 对称的克利福德电路中的抑制操作员来解释我们的发现,在这些电路中可以在经典的莱维(Lévy)飞机的背景下理解新兴的光锥。我们的字母阐明了Clifford电路与更通用的多体量子动力学之间的连接。