摘要 - 这项工作报告了硫的应用 - 钝化发射极和后接触(PERC)太阳能电池的应用。发射极表面被硫化氢(H 2 s)气相反应钝化,并用氢化的非晶硅(A-SIN X:H)层盖住。在对称的N+扩散的发射极上的硫钝化显示导致发射极饱和电流密度(J 0N+)在R板,n+≈100Ω/sq处的30 fa/cm 2。在PERC细胞结构中,S-钝化在发射极表面上的应用,后表面被氧化铝(Al 2 O 3)/A-Sin X:H堆栈钝化,在金属化前显示了有希望的隐含敞开电压(IV OC)为686 mV。该IV OC高于A-SIN X:H或SIO 2 /A-SIN X:H钝的发射极表面(分别为675和674 mV),在同一运行中处理的PERC细胞上。然而,在用激光图案,屏幕打印的金属接触沉积和射击的设备制造后,观察到S-Papsiviving Perc细胞的细胞V OC显着下降。尽管如此,用硫的发射极表面实现了〜20%的效率和〜650 mV的V OC。我们确定760 O C接触触发过程降低了S-抑制质量。研究了表面形态,并进行了详细的表面分析以研究S-PASSITITIVIVITINED表面降解的原因。索引项 - N +扩散的发射极,硫化氢反应,丝网印刷金属接触射击,X射线光电子光谱,P-PERC细胞。
前言 本毒理学概况是根据美国有毒物质与疾病登记署 (ATSDR) 和环境保护署 (EPA) 制定的指导方针* 编写的。原始指导方针于 1987 年 4 月 17 日刊登在《联邦公报》上。每份概况将根据需要进行修订和重新发布。ATSDR 毒理学概况简明扼要地描述了其中描述的这些有毒物质的毒理学和不良健康影响信息。每份同行评审的概况都会确定和审查描述物质毒理学特性的关键文献。其中还介绍了其他相关文献,但描述不如关键研究详细。本概况并非详尽无遗,但参考了更全面的专业信息来源。概况的重点是健康和毒理学信息,因此每份毒理学概况都以一份公共卫生声明开头,该声明以非技术语言描述物质的相关毒理学特性。公共卫生声明之后是有关人类显著接触水平以及(如果已知)显著健康影响的信息。确定物质健康影响的信息是否充分在健康影响摘要中描述。ATSDR 确定了对保护公众健康具有重要意义的数据需求。每个概况包括以下内容:(A)检查,
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年2月19日发布。 https://doi.org/10.1101/2025.02.14.638267 doi:Biorxiv Preprint
H 2 S现在被认为是多种哺乳动物细胞和组织中的内源性生理调节剂。Produced, in a regulated and cell type-dependent manner, by three major enzyme systems, cystathionine c -lyase (CSE), cystathio- nine b -synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST), H 2 S is present intra- and extracellularly and interacts with proteins, DNA, and other members of the reactive species interactome (例如,氧和氮衍生的氧化剂和自由基)并在各种目标和途径上发挥作用。H 2 S的生理作用在基因转录和翻译,细胞生物能学和代谢,血管张力和免疫功能中的调节中得到充分认识,在中枢神经系统和周围神经系统的各种功能以及与生理学家和临床医生相关的许多其他领域的调节中。本综述对H 2 S在哺乳动物细胞和器官中的生理调节作用进行了全面概述。在生理状况下对这些作用的理解以及对H 2 S稳态的扰动的日益了解(例如,血管疾病,血管疾病,代谢性疾病,各种形式的中枢神经系统疾病,各种形式的中枢神经系统疾病,对跨性别疾病的疾病,其他机构的疾病以及其他机理疗法的诊断和诊断的新机会。在这种情况下,基于H 2 s的替换(通过H 2 s-释放的小分子)的新型实验治疗方法已经出现,并正在转化为临床竞技场。在本综述中突出显示,由于生物合成和/或降解增加,在某些疾病中,H 2 S水平在病理上降低了(例如,再灌注损伤,动脉粥样硬化,动脉粥样硬化以及许多其他形式的血管疾病,以及衰减)。在其他疾病(例如,各种形式的炎症,唐氏综合症和癌症)中,H 2 S水平增加,并且抑制H 2 S产生酶正在作为一种实验性治疗方法出现。进一步了解H 2 S的生理调节作用,再加上旨在调节H 2 S稳态的小分子的药理学和翻译科学的进步,预计将来会产生新颖的诊断和临床疗法方法。
摘要:天然气燃烧时的 CO 2 排放因子明显低于石油和煤炭,被公认为迈向碳净零社会的重要过渡燃料。为满足热值要求(≥34.0 MJ/m 3 )并减少对运输管道的腐蚀,必须从原料天然气中去除 CO 2 和 H 2 S 等酸性气体。膜分离是一种很有前途的去除天然气中酸性气体的替代方法。本文旨在回顾用于从天然气中分离 H 2 S 的各种聚合物基膜和膜工艺的发展。总结和分析了用于从天然气中去除 H 2 S 的玻璃聚合物膜、橡胶聚合物膜、混合膜和膜接触器的研究进展。将各种膜的 H 2 S 分离性能绘制在一个图中,并提出了新的 H 2 S/CH 4 上限。深入讨论了 H 2 S 分离膜面临的挑战和未来的发展前景。
抽象的氢硫(H 2 s)是三个已知的气信号传感器之一,由于报道了其潜在的生理作用,因此H 2 S上的文献一直在增加。h 2 s参与了血管舒张,神经传递,血管生成,炎症和预防缺血 - 再灌注损伤等过程,其机制尚待进一步研究。目前,蛋白质翻译后加工的作用已被视为H 2 S参与多种生理过程的可能机制。当前的研究表明,H 2 s参与了蛋白质的S-磺化,磷酸化和S-硝基化。本文着重于涉及H 2 S对生理和病理过程的蛋白质修饰的影响,期待为后续研究提供指导。ª2022作者。Elsevier B.V.的发布服务代表KEAI Communications Co.,Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/by by/4.0/)。
4.1 识别现有或潜在腐蚀问题的方法 4-1 4.2 识别潜在问题区域 ........: ..............4-1 4.3 初步检查 ................................4-4 4.4 腐蚀测量 ' 4-14 4.5 比较测量值和预测值腐蚀 .................4-19 4.6 参考文献 4-25
心血管疾病(CVD)是全球发病率和死亡率的主要原因之一,继续寻找新型治疗剂对于应对这一全球健康挑战至关重要。在过去十年中,硫化氢(H₂S)在医学研究领域引起了极大的关注,因为它已被证明是心脏保护气体信号分子。它以内源产生的燃气递质加入一氧化氮和一氧化碳。至于其机制,H₂S通过在称为硫化的过程中对靶蛋白上的半胱氨酸残基的翻译后添加到半胱氨酸残基来发挥作用。因此,观察到的H₂S的生理作用包括血管舒张,抗凋亡,抗炎,抗氧化作用以及离子通道的调节。各种研究都观察到H₂S在心肌梗塞,缺血 - 重新灌注损伤,心脏重塑,心力衰竭,心律失常和动脉粥样硬化等疾病中的心脏保护益处。在这篇综述中,我们讨论了各种CVD中H₂的机制和治疗潜力。
Petrovic等。表明,天然存在的复合果皮氨酸通过胞化二硫酸甘油-3-磷酸脱氢酶的硫化来增强NAD +,从而延长了老年动物的寿命和健康状态。受Asterix Comics启发的插图说明了用富含Ergotheine的蘑菇制成的“魔术”药水。黄色的烟雾暗示着硫化氢,通过胱淀粉γ-裂解酶产生的硫化氢,驱动蛋白质过硫和代谢重塑以恢复肌肉并增强性能。插图:Maud Vignane。可以通过https://www.isas.de/en/press/prress/archive/prolonged-health-with-with-ergothionine获得该出版物的编辑报告的高分辨率版本。