图1。示意图(简化)CO 2(左)和COS(右)扩散途径成C 3叶片的表示,包括大气中这两种物种的摩尔级分(C A),细胞间空间(C I),Mesophyll细胞(C M),CO 2,CO 2,CO 2,CO 2,CO 2,氯Pllast(C C)。核糖-1,5-二甲氧醇羧化酶氧化酶(Rubisco,叶绿体内)和碳酸酐酶(CA,仅右图)催化CO 2和COS固定。
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
1 南洋理工大学机械与航空航天工程学院,639798,新加坡 2 丹麦技术大学物理系催化理论中心,林比,丹麦 2820 3 新加坡科技研究局(A*STAR)材料研究与工程研究所,2 Fusionopolis Way,Innovis,新加坡 138634,新加坡 5 中国科学院宁波材料技术与工程研究所,宁波 315201,中国 4 中山大学材料学院,广州 510275,中国 6 南洋理工大学电气电子工程学院微纳电子中心(NOVITAS),639798,新加坡 7 CINTRA CNRS/NTU/THALES,UMI 3288,Research Techno Plaza,637553,新加坡Karen Chan:kchan@fysik.dtu.dk;Hong Li:ehongli@ntu.edu.sg 关键词:锂硫电池、催化多硫化物转化、物理化学限制、空心纳米笼
Yu,L.,Ong,S。J. H.,Liu,X.,Mandler,D。&Xu,J。 Z. (2021)。 在锂硫电池中多硫化物溶解的重要性以及对高能量电解质/阴极设计的视角。 Electrochimica Acta,392,139013-。 https://dx.doi.org/10.1016/j.electacta.2021.139013Yu,L.,Ong,S。J. H.,Liu,X.,Mandler,D。&Xu,J。Z.(2021)。在锂硫电池中多硫化物溶解的重要性以及对高能量电解质/阴极设计的视角。Electrochimica Acta,392,139013-。https://dx.doi.org/10.1016/j.electacta.2021.139013
摘要:具有较高载流子迁移率的二维半导体的发现和设计对于高速电子和光电设备至关重要。在此基于高通量计算的基础上,我们确定了一组半导体,硫磺halide halides irsx'(x'= f,cl,br,i),具有较高的载流量(〜10 3 cm 2 v-1 s-1)和高效的光收获(〜34%)。此外,这些材料表现出各向异性的平面运输行为,这是通过铁弹性开关进行切换的,从而提供了单层IRSX的巨大潜力,可用于在方向控制的高速电子和Optoelectronic设备中应用。高载体迁移率和各向异性转运是源自在矩形晶格中的传导带最小值(CBM)和价带最大值(VBM)的IR原子3D轨道的各向异性分布。ML IRSX's(X'= F,Cl,Br)显示出良好的动力学和热稳定性,并且根据相图计算在热力学上稳定,因此未来值得实验实现。
Fang Yang a , Yuenian Shen b , Ze Cen a , Jie Wan a , Shijie Li *c , Guanjie He d , Junqing Hu b,
本文介绍了对硫化物矿石的铜生物侵蚀的早期发展的简要回顾,并讨论了其从巴基斯坦从土著硫化物矿石沉积中提取铜的预期。铜的形式存在于辣椒(Cufes 2),辣椒(Cu 2 s),Covellite(Cus),Bornite(Cu 3 Fes 3),Enargite(Cu 3 Fes 3),Cu 3 Ass 4)和Tennantite(Cu 3 Ass 3),是最重要的重要铜(Cu 3 Ass 3),这是最重要的铜在硫化铜和甲型型号(柱状型)中,孢子型(Strate-Strate-contrancient and Strate-coundert)(硫化物沉积。黄铁矿(FES 2)和其他金属(Ni,Co,Mo,Zn等)硫化物矿物质也存在于硫化矿石沉积物中。在浸出溶液中硫酸盐(FES 2)(FES 2)的细菌氧化和Cu-硫化物矿物质(S)中,在浸出溶液中在浸出溶液中产生硫酸(H 2 SO 4),硫酸铁(Fe 2(So 4)3)和硫酸盐Cuso 4的硫酸和硫酸盐CUSO 4和氧硫化物矿物质(S)由酸性fe-氧化和氧化氧化剂进行了改良,从而产生。硫酸(H 2 SO 4)充当利克西(浸出剂)和硫酸铁(Fe 2(So 4)3)作为墨西哥铜矿的生物素质过程中的氧化剂(CUFES 2)。由于低pH值促进矿物质的质子攻击,并减轻了浸出溶液中金属的沉淀,因此生物无能的反应在pH 1.5-3.0处是最佳的。可溶性铜通过从酸性铜浸出液中的溶剂提取(SX)回收,在下游加工过程中进行了剥离/洗脱,然后进行电工(EW),以生产生物含量的铜铜(99.9%CU)产品。铜是从硫矿石和采矿废物中提取的,并使用堆和倾倒生物渗入过程在商业规模上提取。通过将残留物变成价值,这是一个独特的机会,可以在商业规模上引入创新的环境友好型铜提取技术,从而被认为是高度盈利的。可以将生物渗入过程用于提取Cu和相关的有价值的金属,从土著低级,截止等级,泡沫尾矿和硫化物矿床的采矿废物
前言 本毒理学概况是根据美国有毒物质与疾病登记署 (ATSDR) 和环境保护署 (EPA) 制定的指导方针* 编写的。原始指导方针于 1987 年 4 月 17 日刊登在《联邦公报》上。每份概况将根据需要进行修订和重新发布。ATSDR 毒理学概况简明扼要地描述了其中描述的这些有毒物质的毒理学和不良健康影响信息。每份同行评审的概况都会确定和审查描述物质毒理学特性的关键文献。其中还介绍了其他相关文献,但描述不如关键研究详细。本概况并非详尽无遗,但参考了更全面的专业信息来源。概况的重点是健康和毒理学信息,因此每份毒理学概况都以一份公共卫生声明开头,该声明以非技术语言描述物质的相关毒理学特性。公共卫生声明之后是有关人类显著接触水平以及(如果已知)显著健康影响的信息。确定物质健康影响的信息是否充分在健康影响摘要中描述。ATSDR 确定了对保护公众健康具有重要意义的数据需求。每个概况包括以下内容:(A)检查,
新能源的高使用率推动了下一代储能系统 (ESS) 的发展。钠离子电池 (SIB) 作为锂离子电池 (LIB) 的有希望的替代品,由于地壳中天然 Na 的丰度高达 2.4 wt.%(而 Li 为 0.0017 wt.%)且成本低廉,引起了广泛的研究兴趣。随着 SIBs 技术可行性的增加,高性能电极材料的开发一直具有挑战性。在过去的几年中,具有高理论容量和出色的氧化还原可逆性的双金属硫化物 (BMS) 作为 SIBs 的高性能阳极材料显示出巨大的潜力。本文报道了 BMS 作为 SIBs 阳极的最新进展,并系统地研究了这些电极的电化学机理。此外,还强调了当前的问题、挑战和观点,以解决对相关电化学过程的广泛理解,旨在为 SIB 阳极材料的可能方向提供深刻的展望。
摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。