解决方案进行了广泛的资格测试后,Championx通过NIMS产品选择过程将SICI12589A确定为替代产品。现场试验证明了该产品在腐蚀控制中的表现优于现有产品,并且水分析显示了尺度沉积已被阻止。的变化不仅导致了大量的直接成本节省和提高的性能,而且通过消除大约125吨替代上列出的年度化学使用情况,对环境影响也有了很大的改善。
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
由降水所产生的在自然界中比比皆是,从热液通风口的烟囱到洞穴中的苏打水。 它们的形成受到预言发生的化学梯度的控制,定义了模板生长结构的表面。 我们报告了一种自组织的周期性模板,在铁 - 硫酸盐溶液中用电化学产生肾小管结构;铁氧化物沉淀在气泡表面,这些气泡在管缘上徘徊,然后脱离,然后留下一圈材料。 通过氨从气泡扩散到溶液中,酸 - 碱和氧化还原梯度自发产生,在管壁内组织径向构成分层,这是一种通过含有凝胶含量的摄氏4的氨基氧化物形成的复杂的液体氧化物模式在更大范围内研究的机制。 当壁内形成磁铁矿时,管可能会在外部磁场中弯曲。 在speleothem形成中与自由边缘问题的联系被强调。 产生管状结构的 t繁殖过程跨越了大量的尺度和机制。 在一个极端处是铁硫化物的烟囱,高于水热通风孔(1),在上升,酸性,酸性,热,富含矿物质的液体和较冷的海水周围的碱性,碱性,富含矿物质的液体和更冷的海水之间形成。 有毫米尺度的空心''botryoidal'(类似葡萄的)簇和硫化铁硫化铁的烟囱的化石证据(2)。 管状化石的“藻类结构”,可能是生物源,在带状铁的沉积层中发现(3)。 1)。在自然界中比比皆是,从热液通风口的烟囱到洞穴中的苏打水。它们的形成受到预言发生的化学梯度的控制,定义了模板生长结构的表面。我们报告了一种自组织的周期性模板,在铁 - 硫酸盐溶液中用电化学产生肾小管结构;铁氧化物沉淀在气泡表面,这些气泡在管缘上徘徊,然后脱离,然后留下一圈材料。通过氨从气泡扩散到溶液中,酸 - 碱和氧化还原梯度自发产生,在管壁内组织径向构成分层,这是一种通过含有凝胶含量的摄氏4的氨基氧化物形成的复杂的液体氧化物模式在更大范围内研究的机制。当壁内形成磁铁矿时,管可能会在外部磁场中弯曲。在speleothem形成中与自由边缘问题的联系被强调。t繁殖过程跨越了大量的尺度和机制。在一个极端处是铁硫化物的烟囱,高于水热通风孔(1),在上升,酸性,酸性,热,富含矿物质的液体和较冷的海水周围的碱性,碱性,富含矿物质的液体和更冷的海水之间形成。有毫米尺度的空心''botryoidal'(类似葡萄的)簇和硫化铁硫化铁的烟囱的化石证据(2)。管状化石的“藻类结构”,可能是生物源,在带状铁的沉积层中发现(3)。1)。生物源例子包括软体动物贝壳,部分形成,部分是由于通过地幔中的泵送机制维持的化学梯度(4)和某些细菌,以及某些细菌,该阴离子多糖鞘的鞘吸引并吸引金属阳离子,可以产生由生物体细胞体(5)产生的管状结构(5)。最近的工作还确定,从微生物中挤出的多糖链可以充当氧化铁氧化铁沉淀的模板(6),并且细菌细胞的细丝甚至可以用作合成矿化的模板(7)。石灰石洞穴中的Speleothem形成提供了另一种相关的检查。当水向下流动,并徘徊在吊坠下,溶解的二氧化碳量大,提高pH值,并在滴下碳酸钙沉淀。掉落的脱落留下了一块附着在生长管上的材料环;重复此过程会产生直接的“苏打水”或弯曲的‘helictites'(8)。在电气沉积中也证明了气泡上的降水膜形成(9)。最后,树状“硅酸盐花园”(10-12)生长在硅酸钠溶液中,含有金属离子盐,可能来自硅酸盐凝胶膜上的渗透胁迫,现在可以以非常控制的方式研究(13)。我们在这里描述了一个自组织的过程,该过程是根据气泡的模板作用而生长的(图在电化学细胞的阴极生产,这些气泡支持在气体溶液界面形成的沉淀膜。气泡的脱离留下了延伸试管的物质环,过程继续。从机械上讲,这是洞穴中苏打水的增长的相位版本。,气泡以一到几秒钟的间隔脱离,这些
这是经合组织核能机构 (NEA) 编辑的“化学热力学” (TDB) 系列第 13 卷第 2 部分,是描述铁物种化学热力学数据选择的两卷中的第二卷。正如 2008 年所确认的那样,由于文献中的信息量巨大,因此决定将评论分为两部分进行编写会更有效率。第 1 部分包含对金属、简单离子、水性羟基、氯化物、硫化物、硫酸盐和碳酸盐复合物以及固体氧化物和氢氧化物、卤化物、硫酸盐、碳酸盐和简单硅酸盐的数据评估——这些数据被认为是放射性废物管理计算的关键。评论的第二部分提供了对硫化物固体、硝酸盐、磷酸盐和砷酸盐的固体和溶液物种的数据评估,以及 TDB-Iron 第 1 部分中未考虑的一些水性物种的数据评估,以及氧化铁和硫化铁系统中固体溶液形成的某些方面。即使是现在,由于资源和时间的限制,许多复杂的固体系统如钛酸铁、铝酸盐和更复杂的系统也无法评估。
1。liu,Y。等人,金属硫化物的协调性硫化物与相变的合成增强了对抗生素耐药细菌的反应性。高级功能材料,2023。33(13):p。 2212655。2。Liu,C。等人,红色发射碳点超氧化物歧化酶纳米酶,用于生物成像和改善急性肺损伤。高级功能材料,2023。33(19):p。 2370116。3。li,Q。高级功能材料,2023年:p。 2214826。4。lyu,M。等人,个性化的一氧化碳仿生型纳米纳米纳米纳米,用于富铁的增强闪光灯放射免疫疗法。高级功能材料,2023年:p。 2306930。5。Wang,Z。等人,一种通过溶栓和神经保护作用进行凝血酶激活的肽纳米酶,用于弥补缺血性中风。高级材料,2023年:p。 E2210144。6。li,Y。等,间隙连接蛋白的消融提高了纳米介导的催化/饥饿/温度温度光热治疗的效率。高级材料,2023。35(22):p。 2210464。7。fan,H。等,表面配体工程弦丁氏素纳米素优于辣根过氧化物酶,可增强免疫测定。高级材料,2023年:p。 2300387。8。li,J。等人,基于CO的纳米合法分析:跨越化学,生物医学和环境科学的进步。9。高级材料,2023年:p。 2307337。Wang,D。等人,使用高贵的金属孢子蛋白来设计鼻咽癌的靶向催化疗法,以锻炼强大的和高度活跃的单原子纳米化疗法。高级材料,2023年:p。 2310033。10。Chen,J。等人,锰-CPG纳米复合材料会整合ROS诱导的细胞凋亡以及刺激激活和辅助效果的免疫反应,以消除肿瘤和预防。高级治疗学,2023年。6(3):p。 2200175。11。Cheng,M。等人,在食道鳞状癌的疗法中的进步。高级治疗学,2023年:p。 2200251。12。li,Z。等,使用亚稳态的硫化铁热敏感水凝胶的双相转化策略增强了中耳炎培养基治疗。高级治疗学,2023年。6(8):p。 2300073。13。Miao,X。等人,双向调节病毒和细胞性铁的硫化物针对流感病毒。高级科学,2023。10(17):p。 E2206869。14。fang,L。等人,蛋白质 - 含硒的硒可通过表观遗传调节诱导T(8; 21)白血病细胞分化。高级科学,2023年:p。 2300698。15。shi,Y。等人,从衰老中拯救核细胞通过双重