“我们八年前开始使用这些下一代电池化学。第一个充电周期很棒。到20周期,它是一块无用的金属,”工程与计算学院副教授比拉尔·扎哈布(Bilal El-Zahab)说。“我们必须成为电池窃窃私语者来解决他们的问题,因此在现阶段真正令人兴奋。”
在驯化过程中,大多数哺乳动物都观察到大脑和内部体积大小的变化。然而,尽管将驯养物种与野生亲戚进行比较,但很少有研究重点关注驯养品种之间的差异,尤其是在猫中。在这项研究中,我们使用从计算机断层扫描(CT)图像获得的虚拟内媒体估算了两种不同的家猫品种(Felis Catus)的内族体积。我们的分析没有揭示英国毛道和苏格兰褶皱在内政量上之间的任何显着差异。此外,我们发现了先前使用珠方法从家猫获得的体积的相似结果。尽管这些结果仅代表了整个CAT繁殖多样性的有限样本,但我们希望它们将有助于我们对驯化过程中大脑体积的宏观进化变化的理解。
2024 年 9 月 16 日,公司报告了 Waterberg 项目的独立最终可行性研究更新(“Waterberg DFS 更新”)的积极结果。相关技术报告题为“南非共和国布什维尔德火成岩区 Waterberg 最终可行性研究更新”,生效日期为 2024 年 8 月 31 日,已于 2024 年 10 月 9 日在 SEDAR+ 上提交。Waterberg DFS 更新由独立合格人员根据加拿大国家矿业项目披露标准 43-101(“NI 43-101”)和美国证券交易委员会 SK 条例第 229.1300 部分和第 601(b)(96) 项(统称“SK 1300”)编制。沃特伯格最终可行性研究更新版是沃特伯格项目原始独立最终可行性研究 (简称“2019 年最终可行性研究”) 的更新版,该研究针对安全、大规模、浅层、易于下降式开采、机械化的 PGM 矿。
摘要。铂族金属 (PGM) 一直是汽车催化剂排放控制的前沿,通过提供零排放能源,可能成为净零议程背后的驱动力。文献表明,增材制造 (AM) 的多功能性可用于生产复杂的分层结构,从而增加汽车催化剂、燃料电池 (FC) 和电池中 PGM 的活性催化位点,从而提高运行效率。事实证明,PGM 负载较低的 FC 和电池的性能优于 PGM 负载较高的传统制造能源设备。AM 固有的超本地按需特性可用于破坏传统的多种能源消耗的碳密集型供应链,从而减少大气中的碳排放。AM 和 PGM 之间的协同作用极大地促进了 FC 和电池运行性能的提高,迫使一些国家开始将其能源系统迁移到环保型能源系统。
由于其出色的热稳定性而部分芳香的聚酰胺被广泛用于高温应用中,但是,就像其脂肪族对应物一样,它们很容易易燃且更具挑战性的处理。在这项工作中,合成了几种有机磷的阻燃剂并与部分芳香的聚酰胺合成并复杂化,并评估其可加工性,热和火行为。The compounds containing a commercial flame retardant, Exolit ® OP 1230 (EX), and two new flame retardants, namely 1,4-phe nylenebis(diphenylphosphine oxide) (MP) and (1,1 ′ -biphenyl]-4,4 ′ -diylbis(diphenylphosphine oxide) (BP), showed self-extinguishing与原始PAP相对于原始PAP,功能(即UL94 V0类)具有4 wt%磷(P)的载荷,以及PHRR的实质性降低(最高47%)使用扩展时间尺度上的流变学测量来评估部分芳香族聚酰胺化合物的熔体稳定性。聚合物基质中MP和BP的存在不会触发任何过度的降解现象,例如链条分支,分支或交联反应,从而允许与原始芳族芳族聚酰胺样品相似的稳定加工性。最后,对热分解过程中进化气体的分析表明,在分解过程的早期,MP和BP在很早的早期就发挥着火焰抑制作用。
生理学中的骨稳态取决于骨形成和吸收之间的平衡,在病理学中,这种体内平衡易受不同影响的破坏,尤其是在衰老状态下。肠道菌群已被认为是调节宿主健康的关键因素。许多研究表明,肠道菌群与骨骼代谢之间通过宿主微生物群串扰存在显着关联,而肠道微生物群甚至是骨代谢相关疾病的发病机理的重要因素。本评论探讨了肠道菌群与骨代谢之间的相互作用,重点是肠道微生物群在骨老化和与衰老相关的骨骼疾病中的作用,包括骨质疏松症,脆性骨折修复,骨关节炎以及脊柱变性。总结了内分泌系统,免疫系统和肠道微生物群代谢产物在衰老过程中对骨代谢的影响,从而促进了更好地掌握与衰老相关的骨骼代谢疾病的发病机理。本评论提供了针对肠道菌群的创新见解,以将与骨老化有关的疾病作为一种临床治疗策略。
III-V 半导体与硅外延杂化过程中的晶体相控制 Marta Rio Calvo、Jean-Baptiste Rodriguez *、Charles Cornet、Laurent Cerutti、Michel Ramonda、Achim Trampert、Gilles Patriarche 和 Éric Tournié * Dr. M. Rio Calvo、Dr. J.-B.罗德里格斯、 L. Cerutti 博士、 Pr. É. Tournié IES,蒙彼利埃大学,法国国家科学研究院,F- 34000 蒙彼利埃,法国 电子邮箱:jean-baptiste.rodriguez@umontpellier.fr , eric.tournie@umontpellier.fr Pr. C. Cornet 雷恩大学,雷恩国立应用科学学院,法国国家科学研究院,FOTON 研究所 – UMR 6082,F-35000 雷恩,法国 Dr. M. Ramonda CTM,蒙彼利埃大学,F- 34000 蒙彼利埃,法国 Dr. A. Trampert Paul-Drude-Institut für Festocorporelektronik,Leibniz-Institut im Forschungsverbund Berlin eV,Hausvogteiplatz 5-7,10117,柏林,德国 Dr. G. Patriarche 巴黎-萨克雷大学,法国国家科学研究院,纳米科学与技术中心纳米技术,91120,帕莱索,法国 关键词:外延生长,反相域,单片集成,III-V 半导体,硅衬底
通过Geosol Sulphur分散剂,冷凝器中的硫沉积物和冷却塔中的硫沉积物得以迅速而安全地去除,真空和冷却能力恢复,并大大减少了植物的停机时间。全年,视觉检查没有显示填充物内部水流路径的显着改变。13个月后,对冷凝器进行了彻底检查。它几乎在喷雾器,柱或其他表面上显示任何沉积物。此外,与以前的竞争产品相比,清洁少量存款表面所需的时间和资源要少得多。
降低电池成本是制造商面临的最大挑战之一。目前电池的成本很大一部分来自镍和钴等金属的成本。8 相比之下,锂硫电池电极所用材料成本相对较低,硫是地球上最丰富的元素之一。锂硫电池规模经济的优势将在更广泛的商业化中实现,特别是在电解质的生产方面。预测表明,这可能会使锂硫电池的性能与锂离子电池相当,但价格不到一半。9 从电池中去除钴等过渡金属也是一个重要的考虑因素,因为采矿存在环境和道德问题,供应安全也存在不确定性。10
Cyano群体以其丰富而多样的重新反应而闻名,因此使其成为访问各种官能团的多功能前体,例如羧酸,醛,胺,胺,胺,胺,胺,四唑,阿沙唑和异唑和异质组。和药品。2加上,氰基覆盖的有机化合物在有机电子和相关技术(例如有机太阳能电池(OSC),或者发光二极管二极管(OLEDS)(OLEDS),非线性光学(NLO)(NLO),光转换剂,光转化剂,有机化的cotals和Phototectes cotal和Photots Phototects和Phototsphtphotox cotal中,有机电子和相关技术的多样化起作用起作用。3因此,通过采用一系列氰化试剂来实现cyanation的重要过程。考虑到环境的影响和毒性,从使用常规的cn型试剂(例如KCN,NACN,Zn(CN)₂和K₄[Fe(CN)₆]到相对更安全的金属硫代盐,从使用常规cn染色试剂进行了明显的过渡。4a,这些试剂中的一些产生化学计量的金属废物和/或释放有害的HCN。为了克服这些多年生问题,已经探索了各种非金属有机氰化试剂,用于氰化含有丙酮氰基氢蛋白,三甲基甲硅烷基氰化物(TMSCN),丙烷基丙烯酸酯,丙烷二酸,乙酸乙酯乙酸乙酯,和异西亚酯。4B此外,硝基苯二烯酸和苯甲氰酸酯也被用作金属催化中的有机溶剂。更重要的是,与广泛研究的C – CN键形成相比,构建X – CN键(X = N,S,O)的探索程度较小。8在过去十年中,许多氰化策略