自 2016 年起,担任 UOS 材料和设备表征代表。自 2001 年起,担任 UOS X 射线衍射和 X 射线反射率实验室负责人。从事微电子应用材料领域的研究。研究领域:微电子用氧化物和硫族化物材料、原子层沉积和 MOCVD 沉积、相变存储器、微电子机械系统 (MEMS)、热电材料、拓扑绝缘体。COST 行动 MP1402 HERALD(连接欧洲 ALD 研究)副协调员、LAB4MEMSII 项目(ENIAC 呼叫 2014)副协调员,参与不同的 H2020 和 FP7 项目。欧洲项目 Chemaph(FP7)协调员,负责 PRIN 项目的 CNR。意大利和法国双边项目的协调员,由法国-意大利大学支持。在与 Micron 和 STMicroelectronics 的商业合同竞争中,负责与存储设备和 MEMS 相关的不同活动。拥有美国专利。参与国际项目 VAMAS,旨在实现 X 射线反射率测量的标准化。参与计量项目:IND07,薄膜制造计量,欧洲计量研究计划 (EMRP) 联合研究项目,呼吁 2010 工业 (IND),
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。
盖伊·克拉克 (GUY CLARK)、琳达·科温 (LINDA CORWIN)、克雷格·科温 (CRAIG CORWIN)、理查德·琼斯 (RICHARD JONES)、韦斯利·汉切特 (WESLEY HANCHETT)、迈克尔·赖特 (MICHAEL WRIGHT),原告 - 上诉人,诉黛布·哈兰德 (DEB HAALAND),内政部长官方身份;卡米尔·C·图顿 (CAMILLE C. TOUTON),美国垦务局副局长官方身份;玛莎·威廉姆斯 (MARTHA WILLIAMS),美国鱼类与野生动物管理局首席副局长官方身份;鲁迪·谢巴拉 (RUDY SHEBALA),纳瓦霍族自然资源司执行主任官方身份;大卫·泽勒 (DAVID ZELLER),纳瓦霍族印第安农产品产业负责人官方身份;迈克·哈曼 (MIKE HAMMAN),新墨西哥州工程师官方身份;罗尔夫·施密特-彼得森 (ROLF SCHMIDT-PETERSEN),新墨西哥州州际溪流委员会主任官方身份,被告 - 上诉人。
As 4 分子束 在 PBN 管中注入分子 N 2 气体,产生射频功率诱导等离子体 活性 N 2 * 和 N 物种束 主要激发分子物种:E. Iliopoulos 等,J. Cryst. Growth 278, 426 (2005) 来自 Knudsen 室的 Ga 原子束
幻灯片 1:NN 使命声明概述 - 创造有利于促进和发展纳瓦霍族经济的商业、旅游、工业、小型企业和其他部门业务的环境,从而创造就业和商业机会。幻灯片 2:小型企业部门使命声明 - 在地方层面提供服务,促进、发展和支持纳瓦霍族经济的小型企业部门。为广泛客户提供的服务包括当地社区规划、土地撤出和清理、商业场地租赁、场地开发、商业计划制定、贷款、小额贷款、培训和通过审批流程的领导方面的技术援助。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或所获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能尚未经过稳定性测试,应仅作为建议的起点。由于商业上用于加工这些材料的方法、条件和设备各不相同,因此对产品是否适用于所披露的应用不作任何保证或担保。全面测试和最终产品性能是用户的责任。对于任何超出 Lubrizol Advanced Materials, Inc. 直接控制范围的材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户应承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和特定用途适用性的暗示保证。本文所含内容不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。Lubrizol Advanced Materials, Inc. 是 Lubrizol Corporation 的全资子公司。
,可以说是生产接近工程塑料性能的材料的最佳可持续单体之一。19 - 21,由于固定的刚性双环ste-旋转和同层的合成多功能性,其作为与已建立的双氟环烷基芳族苯乙烯(TFVE)单体共聚合的反应性,可产生半氟化的芳烯烯丙基乙烯乙烯乙烯(Fienylene vinylene Ethere)Polymers(Faive)。尽管通常使用双酚来生产最喜欢的聚合物,但已经报道了一些使用原发性脂肪族二醇的例子。22 - 25然而,没有以前的报道曾尝试使用二次或环状脂肪族二醇产生氟芳基芳基乙烯基醚(FAVE)聚体。在此,我们报告了与BIS -TFVE单体的商业异糖层的平均,无金属且有效的台阶增长聚合,以生成含有明显(23 - 31 wt。%)可再生且潜在可生物降解含量的最爱的聚合物。这种类型的半氟化物可以在涂料,光学膜和气体分离技术中找到应用。
a 海南医学院基础医学与生命科学学院海南省干细胞研究院、海南省热带转化医学教育部重点实验室、海南省热带环境脑科学研究与转化重点实验室,海口 571199 b 香港理工大学工程学院生物医学工程系,香港,中国 c 海南医学院第二附属医院整形外科,海口 570100,中国 d 中科综合医疗转化中心研究院(海南)有限公司,海口 571199,中国 e 淄博市中医院药理科,淄博 255300,中国 f 济宁医学院临床医学院,济宁 272002,中国 g 海南省生物智能材料与生物医疗器械工程研究中心、海南省功能材料与分子影像重点实验室、海南省医学科学院急救与创伤学院海南医学院,海口 571199 h 海南医学院急救与创伤教育部重点实验室,海口市创伤重点实验室,海南省创伤与灾难救援重点实验室,海南医学院第一附属医院,海口 571199 i 海南医学院第二临床学院,海口 571199
比十九世纪早得多,但迄今为止的证据似乎不足以支持这一立场。最近发表的 John K. Bear 冬季计数显示,1725 年在 Big Horn Mountains 附近有一支 Yanktonai 战队,但由于多种原因,这似乎不太可能。Yanktonais 历史上迁往 Tetones 后面的大平原,但 Tetones 在密苏里河附近平原的早期冬季计数记录是 1775 年到达黑山的 Oglala 队伍。此外,Big Horn 地区从来都不是 Yanktonai 领土,这使得他们这么早就进入该地区的可能性更小。Yanktonais 仍然是密苏里河部落。最后,约翰·K·贝尔的冬季计数至少提到过一次与苏族无关的事件(1720 年波尼人击败西班牙人,记录为 1732 年)。大角记录可能与他们没有参与的事件有类似的关联。霍华德,《扬克托奈民族史》,第 29 页。