核酸检测在各种诊断和疾病控制中起着关键作用。目前可用的核酸检测技术面临着速度、简便性、精度和成本之间的权衡挑战。在这里,我们描述了一种用于快速核酸检测的新方法,称为 SENSOR(硫 DNA 介导的核酸传感平台)。SENSOR 由硫代磷酸酯 (PT)-DNA 和硫结合域 (SBD) 开发而成,可特异性结合双链 PT 修饰 DNA。SENSOR 利用 PT-DNA 寡核苷酸和 SBD 作为靶向模块,与分裂荧光素酶报告基因连接,在 10 分钟内产生发光信号。我们对合成核酸和 COVID-19 假病毒进行了检测测试,结合扩增程序实现了阿摩尔灵敏度。单核苷酸多态性 (SNP) 也可以区分。表明 SENSOR 是一种有前途的新型核酸检测技术。
到 2030 年 阿姆斯特丹和德克萨斯州休斯顿 – 2024 年 12 月 5 日 – Stellantis NV 和 Zeta Energy Corp. 今天宣布了一项联合开发协议,旨在推进电动汽车应用的电池技术。此次合作旨在开发具有改变游戏规则的重量能量密度的锂硫电动汽车电池,同时实现与当今锂离子技术相当的体积能量密度。对于客户而言,这意味着电池组可能重量更轻,但可用能量与当代锂离子电池相同,从而实现更大的续航里程、更好的操控性和更高的性能。此外,该技术还有望将快速充电速度提高 50%,使电动汽车的拥有更加便捷。预计锂硫电池每千瓦时价格将不到目前锂离子电池的一半。Stellantis 首席工程和技术官 Ned Curic 表示:“我们与 Zeta Energy 的合作是我们推进电气化战略的又一步,我们致力于提供清洁、安全和价格合理的汽车。” “锂硫等突破性电池技术可以支持 Stellantis 实现 2038 年实现碳中和的承诺,同时确保我们的客户享受最佳续航里程、性能和经济实惠。” “我们非常高兴能与 Stellantis 合作开展这个项目,”Zeta Energy 首席执行官 Tom Pilette 表示。“Zeta Energy 的锂硫电池技术与 Stellantis 在创新、全球制造和分销方面无与伦比的专业知识相结合,可以显著提高电动汽车的性能和成本状况,同时提高电池和电动汽车的供应链弹性。” 这些电池将利用废料和甲烷生产,二氧化碳排放量远低于任何现有电池技术。Zeta Energy 电池技术旨在在现有的超级工厂技术内制造,并将利用欧洲或北美的短而完全国内的供应链。
摘要:锂硫(LI-S)电池代表了一种有希望的下一代电池技术,因为它可以达到高能密度,而无需含有锂之外的任何稀有金属。与锂离子电池(LIBS)相比,从环境和资源的角度来看,这些方面可以从环境和资源的角度使Li-S电池成为有利的位置。目前大规模生产LIB,而Li-S电池则没有。因此,使用前瞻性生命周期评估(LCA)来评估大规模生产的LI-S电池的环境和资源稀缺影响,以构成摇篮到门口和摇篮到摇篮的范围。构建了六个方案,以解释潜在的发展,总体目的是确定减少(未来)环境和资源影响的参数。特定的能量密度和电解质盐的类型是减少摇篮到门的两个最重要的参数,而对于摇篮到宽度的范围,电力源,循环寿命,并且再次是特定的能量密度,是最重要的。此外,我们发现Li-S电池的水透明铝回收利用可能有益于降低矿产资源的影响,但不一定有助于降低其他环境影响。关键字:锂硫电池,大规模储能,生命周期评估,回收,气候变化■简介
胶质瘤是最常见的恶性脑肿瘤,以多形性胶质母细胞瘤(GBM)为代表的高级别胶质瘤预后差、易复发,标准治疗策略是肿瘤切除联合放化疗,如替莫唑胺(TMZ)。但即使经过常规治疗,胶质瘤的复发率仍然很高,因此对有效的抗胶质瘤药物的需求日益增加。药物再利用是一种重新使用已被广泛批准用于新适应症的药物的方法,具有降低研究成本、安全、提高疗效等优点。双硫仑(DSF)最初被批准用于治疗酒精依赖,现已被重新用于胶质瘤的辅助化疗。本文综述了药物再利用方法以及双硫仑再利用用于治疗胶质瘤的研究进展。
Element 16 Technologies, Inc.(Element 16)成功开发并展示了一种新型长时储能技术,该技术使用单罐配置的硫磺来经济高效地储存和调度可再生能源电力。核心创新是利用石油和天然气工业中丰富的废副产品硫磺,大幅降低 Element 16 热能储存的成本。该团队建造并测试了一个中试规模的 1.5 兆瓦时硫磺热电池装置,该装置集成了一个电加热器,旨在利用可再生能源发电产生的可变多余电力进行充电。储存的热量通过小型低温发电装置转化为电能,该装置也可直接用于工业过程热脱碳。
注意:1。使用9.1 25的转化系数,根据60千克加权人类的表面积,将小鼠研究中使用的剂量缓解。小鼠的每日剂量为3.79 g/kg,衍生自9.1的配方量乘以每60千克25 g。每个啮齿动物的喂养体积为每公斤体重20毫升。2。粉末,酸奶和牛奶混合物是根据既定的食物标准制备的。组合(Th+WP)引入混合物中,然后在指定比例中添加蒸馏水。3.我们测试了三个浓度的组合(TH + WP)(85 + 200 mg/ml,170 + 200 mg/ml,170 + 400 mg/ml)。在这三组之间没有观察到没有显着差异,因此我们选择了最低
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变
摘要我们评估了一种无二甲基磺代(ME2SO) - 无冷冻保存解决方案,以冻结人脂肪衍生的间充质基质细胞(HADSC)。在第一个实验中,我们将乳酸林格溶液(LR)中3%海藻糖(3 t)和5%葡萄糖(5D)的综合作用作为冷冻保存碱溶液,其中包含10%pro-Pylene甘油(PG)。在融化后立即将HADSC的细胞活力显着高(P <0.05),其中补充了3 t(LR-3 T)和3 t和5d(LR-3 T-5D)高于LR。在SEC-OND实验中,我们比较了含有10%ME2SO或10%Pg的LR-3 T-5D中HADSC冻融的细胞特性。细胞活力,膜联蛋白V型比,成菌构形成能力,细胞增殖,细胞表面抗原阳性,拟源分化,成骨分化以及对含有LR-3 T-5D后含有LR-3 T-5D后立即对HADSC的细胞因子刺激的遗传反应,含有LR-3 T-5D在10%ME2和10%之间。在第三个实验中,我们检查了各种
MOF已被用作抗菌物质,因为它们本质上是无毒的且稳定的。银基MOF(AG-MOF)由于其广泛的有效抗菌特性而被认为是理想的抗菌材料。48此外,将表面活性剂49添加并固定在固体底物上的MOF 50分别稳定了分散的MOF并提高其水性稳定性,从而改善了其抗菌活性。MOF提供了与传统材料有关药物传递应用的有希望的好处,包括精确控制孔径的大小和形状,以及修改组合和结构的能力,以及展示的生物降解性,出色的加载能力,受控药物释放以及提供多样性功能的能力。51
摘要:本报告描述了非水性氧化还原流量电池的二氨基丙烷 - 苯噻硫氨酸杂化天主分解器的开发。分子是通过添加二氨基丙烷(DAC)取代基于苯噻嗪的氮,以快速和模块化的方式合成。将多功能的C – N耦合方案(可提供对不同衍生物的访问)与计算和结构 - 培训分析允许鉴定CATALYTE,该识别在0.64和1.00 V VS FC /FC +的电位上显示稳定的两电动循环,以及所有氧化液的溶解性以及所有氧化液(均为MIMM5M5 m5 m5 m)。该天主教徒被部署在高能量密度的两电子RFB中,在266小时的流细胞循环中以> 0.5 m的电子浓度表现出> 90%的容量保留。