摘要:在阴极上多硫化物的穿梭和阳极锂树突的不可控制的生长限制了锂 - 硫(Li -s)电池的实际应用。在这项研究中,设计和合成的镍 - 二二烯)和富含N的三嗪中心(即NIS 4-TAPT)的镍 - 双(二硫烯)和富含N的三氮中心(即NIS 4-TAPT)的金属配位3D共价有机框架(COF)。NIS 4中的丰富的NI中心和N位点可以大大增强多硫化物的吸附和转化。同时,Ni -bis(二硫烯)中心的存在使Li阳极均匀的Li成核使Li成核抑制了Li dendrites的生长。这项工作证明了整合催化和吸附位点的有效性,以优化宿主材料与氧化还原活性中间体之间的化学相互作用,从而有可能促进金属协调的COF材料的合理设计用于高性能二级电池。■简介
溶于电解质中的高活动嘴唇与Li金属阳极化学反应。 [9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。 [10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。 [11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。 [12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。 已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。 [13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。 [14]溶于电解质中的高活动嘴唇与Li金属阳极化学反应。[9] Lips和Li Metal Anodes之间的寄生反应在固体电解质中(SEI)中产生不利的成分,并通过连续腐蚀同时破坏SEI。[10]因此,无物质的沉积被加重,有限的LI储层被耗尽,这会在循环和LI-S电池快速故障期间诱导不稳定的Li金属阳极。[11]此外,寄生作用和阳极不稳定性在降级条件下严重加剧,例如使用超薄的李阳极和高岩载的硫磺阴极,这些硫磺是为了构建高能量密度LI – S电池所必需的。[12]因此,抑制嘴唇和Li金属阳极之间的植物反应是稳定Li Metal Anodes并延长Li – S Batteries的循环寿命的先验性。已经提出了各种策略来减轻嘴唇和Li金属阳极之间的寄生反应。[13]保留溶剂的电解质在抑制嘴唇的疾病中特别有效,从而缓解了Li Metal Anode腐蚀。[14]
摘要:本文探讨了使用融合 Sentinel-2 影像(2016 年,ESA)和光探测和测距 (LiDAR) 点云实现土地覆盖制图自动化的可能性,主要重点是探测和监测森林覆盖区域,并获取有关复垦区植被空间(2D 和 3D)特征的精确信息。这项研究针对复垦区进行——位于波兰东南部的两个前硫磺矿,即 Jezi ó rko,其中 216.5 公顷的森林覆盖区在钻孔开采后得到复垦,以及 Mach ó w,其中 871.7 公顷的垃圾场在露天开采后得到复垦。根据 Sentinel-2 图像处理得出 Machów 和 Jeziórko 前硫磺矿的当前土地利用和土地覆盖 (LULC) 等级,并确认了两个分析区域所应用的复垦类型。以下 LULC 等级显示出显著的空间范围:阔叶林、针叶林和过渡林地灌木。不仅在占用面积方面,而且在树木和灌木的生长方面,都证实了森林覆盖区域的进展。研究结果显示植被参数存在差异,即高度和树冠覆盖率。还观察到了植被生长的各个阶段。这表明植被生长过程正在进行中,这是这些区域填海工程的效果。
缓慢释放的肥料(SRF)在农业工业中的肥料应用中起着重要作用。它们是专门设计的,可以优化养分的释放,并在长时间内增强营养递送到农作物。通过有效管理养分释放,SRF提高了肥料的性能和效率,最终防止营养损失和减少废物。此外,缓慢释放的机制允许植物更有效地利用营养。SRF:基于基质和涂层肥料。在生产涂层肥料中使用了各种技术,例如流化的床涂层,锅涂层,旋转鼓,融化挤出,逆悬浮聚合,溶液聚合/交联和微波辐射。流化的床方法是生产涂层肥料的最重要技术之一。全球对可持续农业实践的需求已大大提高了SRF的生产和采用。凭借其庞大的石油和天然气储量以及伊朗富含硫磺的通道,拥有产生含硫涂层的SRF的独特位置。由于硫磺的可用性和低成本,与其他国家相比,伊朗在经济生产含硫的肥料方面具有重要优势。这项研究对全球SRF和新兴生产趋势的生产过程,优势和局限性提供了全面的见解。
2015年,Drozdov及其同事报告了硫化硫化物中的高温超导性[1]。通常认为结果是真实的[2-7]。依赖,黄和同事测量了硫磺氢的AC磁敏感性[8],并且在外观上确定了超导性的存在。根据参考。[9],这项工作“为高压下超导性实验研究设定了新标准”。然而,我们最近认为,参考文献中提出的硫磺中支持超导性的实验证据。[1]并不令人信服[10],而参考文献中都没有提出。[11,12]关于Meissner效应[13,14]。在本文中,我们认为参考文献的AC敏感性测量值。[8]也没有支持硫化硫化物中超导性的支持。到目前为止,尚无其他对AC磁敏感性的研究或硫氢的其他磁性性能。AC磁化率是高压下材料超级电导率的优越测试[15-20]。超导体排除了磁通量,因此在冷却到超导状态后会观察到AC磁敏感性的急剧下降。因此,习惯是根据关系进行高压的实验,因为钻石砧细胞的几何形状所需的样本较小,检测到的信号是由于样品的叠加和背景磁反应的叠加而产生的很大的信号,背景信号的数量高于样品信号的几个阶数[15,16,18,18,20]。
“我们在布尔诺的工厂是我们致力于迅速扩大全球能力来满足过渡到清洁能源产生的加速需求的一个例子。CTPARK BRNO中的这个项目将为我们提供理想的生产我们的经济效率Econiq投资组合的背景,该产品消除了从高压设备中消除使用硫磺六氟化物(SF6)的使用,这是最有效的温室气体。我们投资超过11亿个CZK将提高生产能力,并满足对可持续能源解决方案的不断增长的需求。
不同的储能技术具有具有优势技术经济特征的特殊应用。因此,在当前文献中已经分析了商业成熟储能技术的当前和未来储存成本(LCO)。新兴的储能技术(例如长期飞轮)也正在争夺储能市场,但由于有限且可靠的公开可用数据,它们可以捕获哪些应用程序。在这项工作中,我们确定了典型的1 MW安装固定电化学能源存储(铅酸,钠硫酸盐和锂离子电池)和机械能量存储技术(短期持续时间飞行式飞行和长途飞行型飞行)在2020年到2050年的不同应用中使用更新的相关技术参数,该LCO的未来LCO。基于目前的储能成本,锂离子电池在不同的储能应用中产生最低的LCOE,从而证实了不同学术工作的先前前景。与其他存储技术相比,锂离子电池的成本优势由于成本迅速下降而持续上升。在没有锂离子电池的情况下,长时间的飞轮最初为广泛的应用提供了最低的成本,但它们与钠硫硫磺电池面临激烈的竞争。到2040年,硫磺电池的LCO含量低于长期飞轮的LCO。新兴储能技术的促进者和制造商必须找到迅速降低存储成本以确保其在储能市场中的利基市场的方法。