氯化物(硝酸银法) 氯酸盐(硫酸亚铁法) 高氯酸盐(氯化铵法) 六氯苯(帕尔弹法) 硫氰酸铅(硝酸银法) 钡盐(硫酸盐法) 钡盐(铬酸盐法) 铝(氢氧化铵法) 铝(8-羟基喹啉法) 总铅(铬酸盐法) 总铅(硫酸盐法) 硫(二硫化碳不溶性) 硫(二硫化碳可溶性) 硫化锑(高锰酸盐法) 镍(二甲基乙二肟法) 镁(听力计法) 镁(焦磷酸盐法) 钛和二氧化钛(琼斯还原剂法) 铁(琼斯还原剂法) 钾盐(四苯硼法) 锆或氢化锆(铜铁试剂法) 草酸钠(高锰酸钾法) 硝酸锶(硫酸盐法) 氧化锌(甲酸法) 硝基化合物(氯化钛法) 钾盐和钡盐(火焰分光光度法)
摘要TGA-EGA技术用于研究磺基酸(SA)对由甲基丙烯酰胺,divinylbenzene和Trimethoxyvinylane组成的杂化型特里群前体的碳化过程的影响。在N 2大气下,原始聚合物用SA的饱和溶液在600°C下浸渍。原始混合聚合物和所得碳的特征性能均基于FTIR,Raman和PXRD分析,该分析表明材料是由硅/硅酸盐无序网络互穿的非晶聚合物或碳相组成的。孔隙法分析表明,与原始前体相比,所得的碳具有均匀的超级气孔,平均孔隙宽度为0.7 nm,中孔数量减少。从TGA结果中,遵循浸渍的聚合物在两个阶段分解的浸渍,而不是像原始前体那样。此外,浸渍聚合物的IDT减少了约100°C,其T最大增加了2-5.5°C。他们的分解速度较慢22-37%,这导致该过程的效率提高了10-48%。EGA显示出浸渍前体的分解位置是从酰胺基团的降解开始的,然后发生了SA破坏,然后进一步分解了聚合物。研究得出的结论是,SA对碳化聚合物的表面具有保护作用。在浸渍和热处理期间,SA在前体的毛孔中产生沉积物。这导致孔宽度缩小,延迟和减慢聚合物热分解过程,并提高其效率。
DNA,并将标本存储在-80°C下。DNAM分析是在杜克大学Yongmei Liu博士的实验室进行的。Bisulfite的转化。500ng的DNA。数据是在Illumina Infinium甲基化甲基甲基甲虫v1.0上产生的(CAT#WG317-1001,Illumina,Illumina,San Diego,CA,美国)。使用制造商方案将总共4 µL的硫酸硫酸硫酸含量转换为DNA与Illumina Beadchip杂交。样品被变性并放大过夜20-24小时。样品的碎片,沉淀和重悬于过夜孵化之后,然后与史诗般的珠奇普杂交16-24小时。然后洗涤珠奇普,以去除任何未脑的DNA,并用核苷酸标记以将引物扩展到DNA。按照Infinium HD甲基化协议,使用Illumina Iscan系统(Illumina,Illumina,San Diego,CA,USA)对珠奇普进行成像。
摘要印度尼西亚是具有生态系统,物种和遗传学多样性的大型多样性国家之一。Tabat Barito(ficus deltoidea)是一种药用植物,传统上用于天然壮阳药对女性的天然壮阳药,此外,这种植物还具有抗菌,抗糖尿病,抗毒性,抗高血压和抗癌的好处。这项研究研究了药代动力学预测和纤维甲状腺菌中包含的酚类化合物的潜在生物学活性,包括香草酸,奎宁酸和硫酸化合物。使用Swissadme WebTool进行了药代动力学分析,同时使用Way2Drug进行生物活性。药代动力学分析的结果表明,香草酸和硫酸具有良好和高胃肠道吸收,而奎宁酸的吸收率较低。此外,只有硫酸才能穿透大脑的血液。使用PASS对生物学活性的预测表明,香草酸起作用是氯多酮还原酶抑制剂,具有抑制癌细胞增殖的潜力。奎尼酸充当糖磷酸酶抑制剂,这对于对代谢性疾病的细胞反应很重要,而硫酸酸性酸性酸性酸性酸性酸性酸性抗毒素-Cytoothrome-C还原酶抑制剂对抑制肿瘤的生长很重要。这些结果增强了酚类化合物在治疗应用中的可能性,尤其是用于癌症治疗和代谢疾病。
氯化物(硝酸银法) 氯酸盐(硫酸亚铁法) 高氯酸盐(氯化铵法) 六氯苯(帕尔弹法) 硫氰酸铅(硝酸银法) 钡盐(硫酸盐法) 钡盐(铬酸盐法) 铝(氢氧化铵法) 铝(8-羟基喹啉法) 总铅(铬酸盐法) 总铅(硫酸盐法) 硫(二硫化碳不溶性) 硫(二硫化碳可溶性) 硫化锑(高锰酸盐法) 镍(二甲基乙二肟法) 镁(听力计法) 镁(焦磷酸盐法) 钛和二氧化钛(琼斯还原剂法) 铁(琼斯还原剂法) 钾盐(四苯硼法) 锆或氢化锆(铜铁试剂法) 草酸钠(高锰酸钾法) 硝酸锶(硫酸盐法) 氧化锌(甲酸法) 硝基化合物(氯化钛法) 钾盐和钡盐(火焰分光光度法
氯化物(硝酸银法) 氯酸盐(硫酸亚铁法) 高氯酸盐(氯化铵法) 六氯苯(帕尔弹法) 硫氰酸铅(硝酸银法) 钡盐(硫酸盐法) 钡盐(铬酸盐法) 铝(氢氧化铵法) 铝(8-羟基喹啉法) 总铅(铬酸盐法) 总铅(硫酸盐法) 硫(二硫化碳不溶性) 硫(二硫化碳可溶性) 硫化锑(高锰酸盐法) 镍(二甲基乙二肟法) 镁(听力计法) 镁(焦磷酸盐法) 钛和二氧化钛(琼斯还原剂法) 铁(琼斯还原剂法) 钾盐(四苯硼法) 锆或氢化锆(铜铁试剂法) 草酸钠(高锰酸钾法) 硝酸锶(硫酸盐法) 氧化锌(甲酸法) 硝基化合物(氯化钛法) 钾盐和钡盐(火焰分光光度法)
埋入管道的外部腐蚀很容易受到复杂的地下环境的影响,包括土壤电阻率,pH,溶解的离子浓度,水含量和涂料状态。因此,管道本质上是安全的,外部腐蚀速率预测至关重要。本文研究了浸入培养基对低碳钢制成的样品腐蚀速率的影响。采集样品并使用切割,研磨和清洁样品表面。由环氧基叠加材料产生的聚合物涂层,并用碳化硅颗粒(SIC),氧化锌粉(ZnO)和二氧化钛粉(TIO 2)增强。两个组件的混合比为3:1。在伊拉克的巴士拉省的油,巴士拉省的油田中浸入样品,以及使用硫酸(H2SO 4)和盐酸(HCL)作为腐蚀培养基。在硫酸和盐酸二氧化钛涂层的标本中获得了最低的腐蚀速率,分别为0.00009 mm/y和0.0001 mm/y。浸入硫酸的标本的重量损失高于浸入盐酸中的标本。
背景:COVID-19 大流行促使全世界努力寻找和开发潜在的预防和治疗方法,其中一种方法是测试已批准的药物。羟氯喹用于治疗疟疾、狼疮和类风湿性关节炎,其评估基于其对 COVID-19 的潜在治疗益处。尽管确定它对 COVID-19 无效,但该产品的新处方量显着增加。2020 年 3 月 31 日,FDA 在药品短缺网页上发布了有关羟氯喹短缺的信息。目的:目标是快速开发和实施一种灵敏且有选择性的分析方法,以评估羟氯喹药品的质量,这些药品尚未获准进入美国市场,以帮助解决药品短缺问题。方法:在带有串联质谱仪的 UHPLC 系统上对羟氯喹及其三种杂质进行分析。在具有亚 2 µm 核壳颗粒的先进苯基柱上实现色谱分离。设置10分钟梯度洗脱程序以确保足够的分辨率并保持高通量分析能力。串联质谱仪在多离子监测模式下对所有分析物进行正电喷雾电离操作。结果:该方法根据USP <1225>药典方法验证的要求进行验证。该方法经测定具有灵敏度和选择性,并成功应用于评估来自三个不同制造商的200毫克浓度硫酸羟氯喹片。结论:开发了一种采用先进柱技术的UHPLC-MS/MS方法,并对其进行了验证,可同时定量羟氯喹及其三种杂质。带有MRM检测的方法表现出足够的灵敏度、选择性和分析范围,并且有潜力作为运行时间为10分钟的高通量方法实施。该验证方法已成功应用于美国市场上已批准的硫酸羟氯喹药品的质量评估。这项工作也是正在进行的努力的一部分,旨在开发一个先进的分析平台,以建立研究准备和快速监管应对新出现的质量和公共卫生问题的能力。