试剂部分 # 5X 洗涤缓冲液 10 1X 洗涤缓冲液 11 HPV 包被缓冲液 12 DPBS 和 0.2% TWEEN® 20 (DPBS_0.2T) 13 2N H 2 SO 4 14 0.36NH 2 SO 4 15 柠檬黄溶液 16 293TT 解冻培养基 (293TT TM) 17 293TT 维持培养基 (293TT MM) 18 293TT 冷冻培养基 (293TT FM) 19 70% 乙醇 20 293TT VLP/PsV 转染培养基 (DMEM-TF/DMEM-10A) 21 293TT VLP 转染混合培养基 (DMEM 2%) 用于 Transporter 5 22 293TT VLP 转染混合培养基 (DMEM SF) 用于 PEI 23 DPBS-MGCl 2 10mM A/A (DPBS_MgCl_AA) 24 10% Brij58 25 DPBS/0.8M 盐缓冲液 (DPBS_0.8M) 26 46% OptiPrep 27 27% OptiPrep 28 33% OptiPrep 29 39% OptiPrep 30 293TT 假病毒中和试验培养基 (PBNA_M) 31 1M 硫酸铵 32 HPV VLP 转染裂解缓冲液 33 HPV 假病毒 (PsV) 转染裂解缓冲液 34 DPBS+1%BSA (稀释剂) 35 10% TWEEN® 20 (10_T20) 36 PBS+0.05% TWEEN® 20 (PBS_0.05T) 37 PEI 含5% 葡萄糖 (PEI) 38 DPBS/0.5M 盐缓冲液 (DPBS_0.5M) 39 50 MG Sulfo-NHS 40 DPBS+1% Triton X-100 (DPBS_1%TX) 41 50mM MES 42 组氨酸储存缓冲液 43 鞘液 44 PBST-BSA 缓冲液 (PBST_BSA_PAK) 使用干粉包 45 PBST-BSA 缓冲液 (PBST_BSA) 46 PBS+0.05% TWEEN® 20 (Luminex_Wash) 47 板涂层 48 封闭缓冲液 49 Luminex 珠储存缓冲液 50
摘要:研究pH敏感瓜尔胶接枝聚合物包覆5氟尿嘧啶的设计、细胞毒性及肿瘤靶向药物递送。以瓜尔胶、2-羟乙基甲基丙烯酸酯和核黄素靶向剂为原料,以N,N-亚甲基双丙烯酰胺为交联剂,四甲基乙二胺(TEMED)引发剂和过硫酸铵为催化剂,成功制备了载GG接枝p(HEMA)共轭核黄素薄膜(GG-gP(HEMA)-RF),该薄膜可负载5氟尿嘧啶并用于肿瘤靶向治疗。采用FT-IR和XRD光谱技术分析了GG-gP(HEMA)-RF的结构特征。SEM结果表明,该载体呈均匀的棒状,孔隙率低,对5氟尿嘧啶的包覆和缓释性能优异。靶向药物输送策略因其疗效更有效、副作用更少等优势而受到科学界的特别关注。用台盼蓝拒染试验研究了不同浓度(0、25、50、100 和 150 μg/mL)下 5FU 负载的 GG-gP(HEMA)-RF 对艾氏腹水癌 (EAC) 细胞的体外细胞毒性作用。MTT 细胞毒性试验研究了针对 EAC 实验模型的细胞活力,并表明载体具有良好的生物相容性。结果揭示了艾氏腹水癌细胞系中的抗增殖作用以及凋亡的分子信号传导和产生的活性氧 (ROS)。EAC 细胞中凋亡的形态变化明显,染色后用光学显微镜观察到。采用DPPH自由基清除实验测定了5FU负载和未负载的GG-gP(HEMA)-RF的自由基清除活性,并用电子显微镜和荧光光谱法研究了5FU负载的GG-gP(HEMA)-RF与DNA的相互作用。
Pikovskaya 琼脂 预期用途 Pikovskaya 琼脂用于检测溶解磷酸盐的土壤微生物。 摘要 磷酸盐在土壤中以有机和无机形式存在。来自死亡和腐烂植物残骸的有机物富含有机磷源。然而,植物只能以游离形式利用土壤中的磷。土壤磷酸盐由植物根部或土壤微生物提供。因此,溶解磷酸盐的土壤生物在纠正农作物缺磷方面发挥着作用。 Sundara Rao 和 Sinha 改良了 Pikovskaya 琼脂,用于检测土壤中溶解磷酸盐的细菌。 原理 培养基中的酵母提取物提供氮和其他营养物质,以支持细菌生长。葡萄糖作为能量来源。不同的盐和酵母提取物支持生物的生长。溶解磷酸盐的细菌将在此培养基上生长,并在菌落周围形成一个透明区域,这是由于菌落附近的磷酸盐溶解而形成的。配方* 成分 g/L 酵母提取物 0.5 葡萄糖 10.0 磷酸钙 5.0 硫酸铵 0.5 氯化钾 0.2 硫酸镁 0.1 硫酸锰 0.0001 硫酸亚铁 0.0001 琼脂 15.0 最终 pH(25°C 时) 7.0 ± 0.2 *根据性能参数进行调整。 储存和稳定性 将脱水培养基储存在密闭容器中,温度低于 30°C,将配制好的培养基储存在 2°C-8°C 下。避免冷冻和过热。请在标签上的有效期前使用。开封后,请将粉末培养基密闭,以免受潮。 样本采集和处理 对于临床样本,请按照既定指南遵循适当的样本处理技术。对于食品和乳制品样本,请按照既定指南遵循适当的样本处理技术。对于水样,请按照既定指南和当地标准采用适当的技术处理样本。应在施用抗菌剂之前获取样本。使用后,受污染的材料必须通过高压灭菌器进行灭菌,然后才能丢弃。说明
为了满足这些营养需求,生产者经常使用尿素和硫酸铵 (AMS) 的物理混合物。虽然物理混合物可能具有施肥者所需的营养量,但一旦撒在田地里,可能会导致营养条纹不均匀。另一种选择可能是均质混合物,包括大分子和次要营养元素,例如氮 (N)、钾 (K) 和硫酸盐-硫 (SO4-S),其中含有适合大多数土壤的最佳数量的这些营养元素。目标考虑到油菜籽与大多数作物相比具有较高的营养需求,2024 年在朗登研究推广中心进行了一项肥料试验。该试验由 UKT 芝加哥赞助。试验的目的是比较两种均质新肥料 NKS(28-0-5-6SO4-S)和 NKS(26-0-7-9SO4-S)与尿素和 AMS 等直接肥料的效果。新型肥料中的氮以铵 (NH4 + ) 和硝酸盐 (NO3 - ) 形式存在,因此与尿素不同,它们不会因氨挥发而损失。该研究采用了三种不同比率的氮、钾和硫酸盐-硫 (SO4-S),并测量了油菜籽的产量和质量。根据土壤有效磷的结果,所有处理统一施用磷。试验地点试验地点位于北达科他州兰登的 NDSU 兰登研究推广中心。处理和重复根据土壤分析结果,所有处理都采用了全比率的磷,即每英亩 72 磅,而采用尿素和 AMS 组合的直接施肥处理(T2、T3 和 T4)没有采用任何钾。但是,这些处理确实采用了等量的氮和等量或接近量的 SO4-S。由于均质肥料 NKS 28 和 NKS 26 中含有钾,因此 T5 至 T10 处理除了氮、磷和 SO4-S 外还添加了钾。此外,在 T2 至 T4 处理中,尿素以 14 毫升/10 磅的比例用脲酶抑制剂处理,所有肥料均以表面撒播的方式施用。肥料和养分类型及数量的详细信息见表 1。
甘露醇稳定剂 Abrysvo RSV 22.5 mg 聚山梨醇酯 80 表面活性剂 Abrysvo RSV 0.08 mg 矿物质盐 调节张力 Abrysvo RSV 1.1 mg 氯化钠 蔗糖稳定剂 Abrysvo RSV 11.3 mg 氨丁三醇稳定剂 Abrysvo RSV 0.11 mg 盐酸氨丁三醇稳定剂 Abrysvo RSV 1.04 mg 硫酸铵 蛋白质净化剂 ActHIB Hib 净化成分 牛酪蛋白培养基营养物 ActHIB Hib 包装说明书中未指定的数量 甲醛灭活剂 ActHIB Hib <0.5 mcg 矿物质盐 调节张力 ActHIB Hib 稀释剂中 0.4% 氯化钠 蔗糖稳定剂 ActHIB Hib 8.5% 2-苯氧乙醇稳定剂 Adacel Tdap 3.3 mg (0.6% v/v)(不作为防腐剂) 磷酸铝佐剂 Adacel Tdap 1.5 mg(0.33 mg 铝) 硫酸铵 蛋白质净化剂 Adacel Tdap 净化成分 牛,酪蛋白氨基酸稳定剂 Adacel Tdap 包装说明书中未指定的数量 二甲基-β-环糊精 培养基营养物 Adacel Tdap 包装说明书中未指定的数量 甲醛灭活剂 Adacel Tdap ≤5 mcg 戊二醛灭活剂 Adacel Tdap <50 ng(残留) 蛋清(卵清蛋白) 残留培养基 Afluria Influenza ≤1 mcg β-丙内酯病毒灭活剂 Afluria Influenza <2.3 ng 氯化钙 培养基营养物 Afluria Influenza 0.5 mcg 氢化可的松 培养基营养物 Afluria Influenza ≤0.56 ng 硫酸新霉素 抗菌剂 Afluria Influenza ≤61.5 ng 磷酸盐缓冲液 缓冲液 Afluria Influenza 20 mcg 磷酸二氢钾 80 mcg 磷酸二氢钠 300 mcg 磷酸二氢钠 多粘菌素 B 抗菌剂 Afluria Influenza ≤10.5 ng 氯化钾缓冲液 Afluria Influenza 20 mcg 矿物质盐 调节张力 Afluria Influenza 4.1 mg 氯化钠 牛磺脱氧胆酸钠 蛋白质净化剂 Afluria Influenza ≤10 ppm(残留) 蔗糖稳定剂 Afluria Influenza <10 mcg 硫柳汞防腐剂 Afluria Influenza 24.5 mcg 汞仅在多剂量小瓶中;单剂量中无 AS01 E 佐剂 AREXVY RSV 包装说明书中未指定的量 胆固醇 脂质 AREXVY RSV 0.125 mg DNA 残留培养基 AREXVY RSV ≤0.80 ng/mg DOPC AS01 E 中的脂质 AREXVY RSV 0.5 mg 宿主细胞 蛋白质 残留培养基 AREXVY RSV ≤2.0% 磷酸盐缓冲液 缓冲液 AREXVY RSV 4.4 mg 氯化钠 0.83 mg 磷酸二氢钾 0.26 mg 磷酸二钾 0.15 mg 无水磷酸二钠 聚山梨醇酯 80 表面活性剂 AREXVY RSV 0.18 mg 盐、矿物质 调节张力 AREXVY RSV 4.4 mg 氯化钠 海藻糖 稳定剂 AREXVY RSV 14.7 mg 氢氧化铝 佐剂 Bexsero 脑膜炎球菌B 1.5 毫克(0.519 毫克铝)组氨酸培养基营养素Bexsero 脑膜炎球菌 B 0.776 毫克卡那霉素抗菌素Bexsero 脑膜炎球菌 B <0.01 微克盐、矿物质调节张力Bexsero 脑膜炎球菌 B 3.125 毫克氯化钠蔗糖稳定剂Bexsero 脑膜炎球菌 B 10 毫克氢氧化铝佐剂增强剂Tdap ≤0.3 毫克铝 牛酪蛋白 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 牛提取物 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 甲醛灭活剂 Boostrix Tdap ≤100 微克(残留) 戊二醛灭活剂 Boostrix Tdap 包装说明书中未指定量 聚山梨醇酯 80 表面活性剂 Boostrix Tdap ≤100 微克(吐温 80) 矿物质盐 调节张力 Boostrix Tdap 4.4 毫克氯化钠 葡萄糖 培养基 营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定量 L-组氨酸 培养基 营养物 Capvaxive 肺炎球菌 21 1.55 毫克 苯酚灭活剂 Capvaxive 肺炎球菌 21 净化成分 聚山梨醇酯 20 表面活性剂Capvaxive 肺炎球菌 21 0.50 mg 盐、矿物质 调节张力 Capvaxive 肺炎球菌 21 4.49 mg 氯化钠 酵母培养基营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定的量 (4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-己基癸酸酯)
甘露醇稳定剂 Abrysvo RSV 22.5 mg 聚山梨醇酯 80 表面活性剂 Abrysvo RSV 0.08 mg 矿物质盐 调节张力 Abrysvo RSV 1.1 mg 氯化钠 蔗糖稳定剂 Abrysvo RSV 11.3 mg 氨丁三醇稳定剂 Abrysvo RSV 0.11 mg 盐酸氨丁三醇稳定剂 Abrysvo RSV 1.04 mg 硫酸铵 蛋白质净化剂 ActHIB Hib 净化成分 牛酪蛋白培养基营养物 ActHIB Hib 包装说明书中未指定的数量 甲醛灭活剂 ActHIB Hib <0.5 mcg 矿物质盐 调节张力 ActHIB Hib 稀释剂中 0.4% 氯化钠 蔗糖稳定剂 ActHIB Hib 8.5% 2-苯氧乙醇稳定剂 Adacel Tdap 3.3 mg (0.6% v/v)(不作为防腐剂) 磷酸铝佐剂 Adacel Tdap 1.5 mg(0.33 mg 铝) 硫酸铵 蛋白质净化剂 Adacel Tdap 净化成分 牛,酪蛋白氨基酸稳定剂 Adacel Tdap 包装说明书中未指定的数量 二甲基-β-环糊精 培养基营养物 Adacel Tdap 包装说明书中未指定的数量 甲醛灭活剂 Adacel Tdap ≤5 mcg 戊二醛灭活剂 Adacel Tdap <50 ng(残留) 蛋清(卵清蛋白) 残留培养基 Afluria Influenza ≤1 mcg β-丙内酯病毒灭活剂 Afluria Influenza <2.3 ng 氯化钙 培养基营养物 Afluria Influenza 0.5 mcg 氢化可的松 培养基营养物 Afluria Influenza ≤0.56 ng 硫酸新霉素 抗菌剂 Afluria Influenza ≤61.5 ng 磷酸盐缓冲液 缓冲液 Afluria Influenza 20 mcg 磷酸二氢钾 80 mcg 磷酸二氢钠 300 mcg 磷酸二氢钠 多粘菌素 B 抗菌剂 Afluria Influenza ≤10.5 ng 氯化钾缓冲液 Afluria Influenza 20 mcg 矿物质盐 调节张力 Afluria Influenza 4.1 mg 氯化钠 牛磺脱氧胆酸钠 蛋白质净化剂 Afluria Influenza ≤10 ppm(残留) 蔗糖稳定剂 Afluria Influenza <10 mcg 硫柳汞防腐剂 Afluria Influenza 24.5 mcg 汞仅在多剂量小瓶中;单剂量中无 AS01 E 佐剂 AREXVY RSV 包装说明书中未指定的量 胆固醇 脂质 AREXVY RSV 0.125 mg DNA 残留培养基 AREXVY RSV ≤0.80 ng/mg DOPC AS01 E 中的脂质 AREXVY RSV 0.5 mg 宿主细胞 蛋白质 残留培养基 AREXVY RSV ≤2.0% 磷酸盐缓冲液 缓冲液 AREXVY RSV 4.4 mg 氯化钠 0.83 mg 磷酸二氢钾 0.26 mg 磷酸二钾 0.15 mg 无水磷酸二钠 聚山梨醇酯 80 表面活性剂 AREXVY RSV 0.18 mg 盐、矿物质 调节张力 AREXVY RSV 4.4 mg 氯化钠 海藻糖 稳定剂 AREXVY RSV 14.7 mg 氢氧化铝 佐剂 Bexsero 脑膜炎球菌B 1.5 毫克(0.519 毫克铝)组氨酸培养基营养素Bexsero 脑膜炎球菌 B 0.776 毫克卡那霉素抗菌素Bexsero 脑膜炎球菌 B <0.01 微克盐、矿物质调节张力Bexsero 脑膜炎球菌 B 3.125 毫克氯化钠蔗糖稳定剂Bexsero 脑膜炎球菌 B 10 毫克氢氧化铝佐剂增强剂Tdap ≤0.3 毫克铝 牛酪蛋白 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 牛提取物 培养基 营养物 Boostrix Tdap 包装说明书中未指定量 甲醛灭活剂 Boostrix Tdap ≤100 微克(残留) 戊二醛灭活剂 Boostrix Tdap 包装说明书中未指定量 聚山梨醇酯 80 表面活性剂 Boostrix Tdap ≤100 微克(吐温 80) 矿物质盐 调节张力 Boostrix Tdap 4.4 毫克氯化钠 葡萄糖 培养基 营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定量 L-组氨酸 培养基 营养物 Capvaxive 肺炎球菌 21 1.55 毫克 苯酚灭活剂 Capvaxive 肺炎球菌 21 净化成分 聚山梨醇酯 20 表面活性剂Capvaxive 肺炎球菌 21 0.50 mg 盐、矿物质 调节张力 Capvaxive 肺炎球菌 21 4.49 mg 氯化钠 酵母培养基营养物 Capvaxive 肺炎球菌 21 包装说明书中未指定的量 (4-羟基丁基)氮烷二基)双(己烷-6,1-二基)双(2-己基癸酸酯)
1。药物产物的名称嗜血杆菌流感型B型结合疫苗i.p.(冻干)。2。QUALITATIVE AND QUANTITATIVE COMPOSITION Haemophilus influenzae Type b Conjugate Vaccine (Sii HibP RO ) is a freeze-dried vaccine of purified polyribosyl ribitol phosphate capsular polysaccharide (PRP) of Hib, covalently bound to tetanus toxoid (carrier protein).HIB多糖是由H流感型B型菌株的囊多糖制备的,激活后与破伤风毒素偶联。破伤风毒素是通过提取,硫酸铵纯化和福尔马林从破塔尼氏梭菌培养物来制备的。疫苗符合WHO和I.P.的要求在WHO中概述的方法测试时,TRS 897(2000)和i.p.每剂量为0.5 ml,含有:纯化的囊囊多糖(PRP)共轭10 mcg破伤风毒素(载体蛋白)19至33 mcg稀释剂:用稀释剂重新植入了流感型流感的稀释剂。3。药物形式嗜血杆菌流感型B型结合疫苗i.p.是一种纯化的HIB的纯化多氧0个蛋白磷酸磷酸磷酸胶质胶状多糖(PRP)的冷冻干燥疫苗,共价结合到破伤风毒素(载体蛋白)。4。临床细节4.1治疗指示SII HIBP RO(B型流感型B型结合物疫苗i.p.)用于针对所有6周至5岁儿童的B型流感型流感嗜血杆菌的主动免疫。sii hibp ro(嗜血杆菌型B型结合疫苗i.p.)不能预防其他类型的流感烟草或其他生物引起的脑膜炎。4.2剂量和给药剂量SII HIBP RO(B型流感B型偶联疫苗i.p.)指示为6周至60个月大的儿童预防由流感嗜血杆菌引起的侵袭性疾病。在6周至6个月大的婴儿中,免疫剂量是在大约4周间隔内给出0.5 mL的三个单独注射。以前7至11个月大的未接种婴儿应接受两次单独的注射,相距约2个月。以前未接种疫苗的12至14个月大的儿童应接受一次注射。所有接种疫苗的儿童应在12-18个月大的时候接受单一助推器剂量,但不少于先前剂量后2个月。以前未接种疫苗的儿童15至60个月大
摘要:基因组编辑,特别是使用 CRISPR-Cas9,是操纵基因组(包括大肠杆菌)的有力工具。本研究旨在利用 CRISPR-Cas9 对大肠杆菌中的 lacZ 基因进行遗传工程改造,以评估其在红薯皮(Ipomoea batatas)深层发酵过程中在淀粉酶产生中的作用。在 37ºC、pH 6.2、7.0 和 8.4 条件下培养编辑型和野生型大肠杆菌,并使用硫酸铵纯化所得淀粉酶。使用淀粉作为葡萄糖源筛选淀粉酶的产生,并在不同温度和 pH 水平下进行酶表征。没有向导 RNA (gRNA) 和阿拉伯糖的 CRISPR-Cas9 编辑的大肠杆菌显示蓝色菌落,而有 gRNA、Cas9 但没有阿拉伯糖的 CRISPR-Cas9 编辑的大肠杆菌没有菌落。用 Cas9 和阿拉伯糖但不加 gRNA 编辑的大肠杆菌也产生了蓝色菌落。当暴露于 Cas9、gRNA 和阿拉伯糖时,菌落表现出白色表型。凝胶电泳显示,暴露于 Cas9 和阿拉伯糖的大肠杆菌在 650 bp 处有两条带,而暴露于不含 gRNA 和阿拉伯糖的 Cas9 的蓝色菌落则在 1,100 bp 处显示条带。阳性对照显示三条不同的条带,而阴性对照没有。淀粉酶筛选显示野生型大肠杆菌和 CRISPR 编辑的大肠杆菌有相似的透明区。在发酵 15 天期间,pH 8.4 为野生型大肠杆菌的生长提供了最有利条件,pH 7.0 为 CRISPR 编辑的大肠杆菌的生长提供了最有利条件。温度和 pH 值测定表明,野生型和 CRISPR 编辑的大肠杆菌在 45ºC 和 pH 7 下均表现出相似的最大淀粉酶活性,酶产量没有显着差异。这些结果表明 lacZ 基因对大肠杆菌中的淀粉酶产生没有显着影响。 DOI:https://dx.doi.org/10.4314/jasem.v28i10.5 许可证:CC-BY-4.0 开放获取政策:JASEM 发表的所有文章均为开放获取文章,任何人都可以免费下载、复制、重新分发、转发、翻译和阅读。版权政策:© 2024。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:MINARI, J. B; NWOSU, GE; DADA, I. S; ABDULAZEEZ, DO (2024)。使用马铃薯皮(Ipomea batata)作为酶源,分离和表征由 CRISPR-Cas 9 编辑的 LacZ 基因和未编辑的大肠杆菌产生的淀粉酶。应用科学与环境管理杂志 28 (10) 2981-2989 日期:收到日期:2024 年 7 月 7 日;修订日期:2024 年 8 月 15 日;接受日期:2024 年 8 月 19 日出版日期:2024 年 10 月 5 日关键词:CRISPR Cas9 基因编辑、lacZ 基因、大肠杆菌、马铃薯皮发酵、淀粉酶理想的代谢催化剂是酶,它通过明确定义的途径提供各种内源性生化反应。(Singh 等人,2019 年)。由于酶存在于所有自然界物种中,包括植物、动物、和微观微生物,它们可用于工业用途。此外,在受控情况下,各种微生物酶被识别
zeeshan.haider@imbb.uol.edu.pk摘要β半乳糖苷酶是水解酶,可以在真菌,细菌和酵母等微生物以及植物,动物细胞和重组来源中找到。该酶用于两个目的:从乳糖不耐症的人那里消除乳糖并创建半乳糖化的商品。这项研究旨在隔离和优化从奶牛场附近收集的土壤样品中产生β-半乳糖苷酶的微生物。用于筛选X-gal(5-溴-4-氯-3- indoyl-β-d-半乳乙酰糖苷),使用具有蓝色的糖苷酶活性的指标,是一种蓝色的糖苷酶活性的指标。用pHAT7获得最大的酶产生,温度为37ºC。在蔗糖,硫酸铵,硫酸镁和小麦粉中观察到最大产生的其他因素。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。 这些结果揭示了乳杆菌属。 产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。在酶测定中ONPG(正硝基苯基-β-半乳糖苷)中用作底物。这些结果揭示了乳杆菌属。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。 引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。 该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。 作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。 最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。产生从具有有利特征的土壤样品中获得的β-半乳糖苷酶在食品工业中具有至关重要的作用。引言β-半乳糖苷酶是一种糖苷水解酶,通常称为乳糖酶。该酶负责通过在水存在下打破糖苷键来使ꞵ-半乳糖苷酶的水解产生,从而将其分解成简单的单糖。半乳糖和酒精。作为一个活跃的酶,β-半乳糖苷酶可以将β连锁半乳糖的残基与各种化合物分开,从而将乳糖散发到半乳糖和葡萄糖中。最早发现的水解体之一是β-半乳糖苷酶(Husain,2010)。乳糖 - 水解酶,β-半乳糖苷酶是一种水解乳糖的酶,因此被认为是乳制品行业的基本酶。β-半乳糖苷酶是一种极为必要的酶,它通过破坏乳糖(牛奶甜糖)来完全消化牛奶。这种类型的酶主要出现在微生物中(Burn,2012),动物器官和植物,例如杏仁,苹果,桃子和杏子。除了其水解作用外,它还用于生产含有乳糖的人含量较低的食品。对于使用环境污染物奶酪乳清的利用也至关重要(Gandhi等,2018),通过降低
化学部门:精选参考文献 6121 光谱学和动力学 Dunkelberger, AD; Ratchford, DC; Grafton, AB; Breslin, VM; Ryland, ES; Katzer, DS; Fears, KP; Weiblen, RJ; Vurgaftman, I.; Giles, AJet al. 超快主动调节 Berreman 模式。ACS Photonics 2020, 7 (1), 279;https://doi.org/10.1021/acsphotonics.9b01578 Dunkelberger, AD; Ellis, CT; Ratchford, DC; Giles, AJ; Kim, M.; Kim, CS; Spann, BT; Vurgaftman, I.; Tischler, JG; Long, JPet al. 通过载流子光注入主动调节表面声子极化子共振。 Nature Photonics 2018, 12 (1), 50; https://doi.org/10.1038/s41566-017-0069-0 Grafton, AB; Dunkelberger, AD; Simpkins, BS; Triana, JF; Hernández, FJ; Herrera, F.; Owrutsky, JC 硝普钠中的激发态振动-极化子跃迁和动力学。Nature Communications 2021, 12 (1), 214.;https://doi.org/10.1038/s41467-020-20535-z Klug, CA; Miller, JB 自动检测宽 NMR 谱:顺磁性 UF4 的 19F NMR 和负载型 Pt 催化剂的 195Pt NMR。固态核磁共振 2018,92,14-18;https://doi.org/10.1016/j.ssnmr.2018.03.006 Maza, WA;Pomeroy, ED;Steinhurst, DA;Walker, RA;Owrutsky, JC 固体氧化物燃料电池合成气运行中硫污染的光学研究。电源杂志 2021,510,230398;https://doi.org/10.1016/j.jpowsour.2021.230398 6123 材料合成与加工 Chaloux, BL;Yonke, BL;Purdy, AP;Yesinowski, JP;Glaser, ER;Epshteyn, A.; P(CN)3 碳磷氮化物前体扩展固体材料化学,2015, 27 (13), 4507–4510;https://doi.org/10.1021/acs.chemmater.5b01561 Epshteyn, A.; Garsany, Y.; More, KL; Jain, V.; Meyer III, HM; Purdy, AP; Swider-Lyons, KE;通过将催化剂纳米粒子粘附固定在石墨碳载体上来提高电催化剂耐久性的有效策略,ACS Catalysis 2015, 5 (6), 3662–3674; https://doi.org/10.1021/cs501791z Maza, WA、Breslin, VM、Owrutsky, JC、Pate, BB、Epshteyn, A、水合电子的纳秒瞬态吸收和线性全氟烷基酸和磺酸盐的还原,环境科学技术快报,2021,8,7,525-530;https://doi.org/10.1021/acs.estlett.1c00383 MT Finn、BL Chaloux 和 A. Epshteyn,探索反应条件对声化学生成的 Ti-Al-B 燃料粉末形态和稳定性的影响,能源与燃料,2020,34,11373-11380; https://doi.org/10.1021/acs.energyfuels.0c01050 MD Ward、BL Chaloux、MD Johannes 和 A. Epshteyn,《硼硫酸铵中的便捷质子传输——一种适用于中温的未加湿固体酸聚电解质》,《先进材料》,2020 年,2003667;https://doi.org/10.1002/adma.202003667 6124 材料应用概念 Thum, MD;Casalini, R.;Ratchford, D.;Kołacz, J.;Lundin, JG,通过表面诱导无序实现的液晶芯纳米纤维的光致变色相行为。J. Mat. Chem. C,2021,9,12859-12867;https://doi.org/10.1039/D1TC02392F Giles, SL;Sousa-Castillo, A.;Santiago, EY;Purdy, AP;Correa-Duarte, MA;Govorov, AO;Baturina, OA 使用 SiO2-TiO2 复合颗粒和空气进行有害硫化物 2-氯乙基乙基硫化物的可见光驱动氧化。胶体界面科学通讯,2021,41,100362;https://doi.org/10.1016/j.colcom.2021.100362