成分 鸡肉、鸡肉粉、玉米蛋白粉、酿酒米、黄玉米粉、小麦粉、植物油(中链甘油三酯来源)、玉米胚芽粉、大麦、天然香料、鱼油、干蛋制品、L-精氨酸、麦麸、鱼粉、磷酸一钙和磷酸二钙、氯化钾、盐、碳酸钙、L-赖氨酸盐酸盐、维生素 E、氯化胆碱、L-抗坏血酸-2-多磷酸盐(维生素 C)、硫酸锌、硫酸亚铁、烟酸(维生素 B-3)、维生素 A 补充剂、硝酸硫胺素(维生素 B-1)、硫酸锰、大豆油、泛酸钙(维生素 B-5)、维生素 B-12 补充剂、核黄素补充剂(维生素 B-2)、硫酸铜、盐酸吡哆醇(维生素 B-6)、大蒜油、叶酸(维生素 B-9)、亚硫酸氢钠甲萘醌复合物(维生素 K)、生物素(维生素 B-7)、碘酸钙、维生素 D-3 补充剂、亚硒酸钠。
图像2:Firebird共同沉淀过程成本和生产优势的高级过程流程表从LMFP阴极生产中产生的LMFP阴极产生的优势,生产商通常购买了结晶的MNSO₄₄,然后将其溶解回解决方案中以进行进一步处理,从而利用了从结晶过程中的大量能量。重要的是,Firebird的创新过程消除了这一效率低下,从而在LMFP阴极生产中具有至关重要的成本优势。消除硫酸盐工艺中的包装和结晶步骤等于预计的硫酸锰操作成本3约32%或167美元/吨。另外,在PCAM水平上预期的磨削还会产生进一步的总节省。CSU利用内部和第三方实验室都将LMFP转换为按钮电池进行全面的性能测试。此外,Firebird的技术很容易转移到中国以外的位置,将公司定位为LMFP阴极制造业的全球领导者。
1 北京理工大学机电学院,北京 100081 2 先进加工技术研究中心,北京 100081 * 电子邮件:heleibuaa@126.com,xucg@bit.edu.cn 收稿日期:2020 年 2 月 2 日 / 接受日期:2020 年 3 月 22 日 / 发表日期:2020 年 5 月 10 日 以硫酸锰和高锰酸钾为原料,CTAB 为表面活性剂,采用简单沉淀法合成 MnOOH 纳米棒,并以此为前驱体制备 Mn2O3 纳米棒。通过超声显微镜和电化学测试等各种物理化学实验对 Mn2O3 纳米棒的结构和性能进行了全面研究。 X 射线衍射、扫描电镜和透射电镜观察表明 Mn 2 O 3 结晶性良好,具有均一的棒状形貌,纳米棒的宽度和长度分别为 200~300 nm 和 2~4 μm。进一步分析该材料的电极性能发现,将其用作锂离子电池负极材料在 0.1C 倍率下可获得 1005 mAh·g -1 的二次放电容量。关键词: MnOOH;负极材料; Mn 2 O 3;锂离子电池。1.引言
产铁载体率为37.95–49.55%。其固氮能力范围为49.23至151.22 μg/mL。这些菌株对植物病原菌具有很强的拮抗活性。特别是,A. chroococcum B-4148和A. vinelandii B-932抑制了禾谷镰刀菌、Bipolaris sorokiniana和Erwinia rhapontici的生长,而P. chlororaphis subsp. aurantiaca B-548对禾谷镰刀菌和B. sorokiniana表现出拮抗作用。由于所有测试菌株都具有生物相容性,因此它们被用于形成多个联合体。协同效应最大的菌群是菌群 6,其包含的菌株 B-4148、B-932 和 B-548 的比例为 1:3:1。该菌群的最佳营养培养基包含 25.0 g/L Luria-Bertani 培养基、8.0 g/L 糖蜜、0.1 g/L 七水硫酸镁和 0.01 g/L 硫酸锰水溶液。最佳培养温度为 28°C。我们研究中创建的微生物菌群在农业实践中具有很高的应用潜力。进一步的研究将集中于其在体外条件和田间试验中对植物(特别是谷类作物)生长发育的影响。
锰结节和富含Mn的谷物在Transvaal超级组的Malmani组白云岩单元的较低接触中出现在不同的水平范围内。结节大部分是在旧的手工钻石奔跑中暴露的,这些钻石是从卡尔顿维尔地区开采到南非西北省的巴克维尔的。由于北开普省的卡拉哈里锰田的统治地位,迄今为止,锰结节和谷物尚未广泛开发。对高纯度锰盐的需求增加,特别是在电池矿物领域,可以作为开发这些沉积物的催化剂。靠近道路和铁路基础设施的存款以及南非设想的加工厂和博茨瓦恩的接近,改善了开发业务案例。引言高级硫酸锰一水合物是电动汽车(EV)电池化学的关键要素。南非包含世界上最大的已知锰矿矿床,是锰矿的主要出口商,主要来自卡拉哈里锰田。然而,还有其他与卡尔顿维尔锰矿相关的高级锰矿矿床,其中结节含有42%-48%Mn和<10%的Fe。结节托管在Transvaal超级组的白云岩地层中。矿石形成归因于原位的表面风化,部分溶解和从锰白云岩乡村岩石中浸出矿石物质。锰盐保存在典型的喀斯康斯坦结构中,位于含水液腐内的锰海豚的顶部。腐生岩又覆盖着西晶状冲积物的尖锐侵蚀接触,托有锰结节。Carletonville锰矿床浅而多样,钻石,银色矿石和黄金作为副产品的矿化。该沉积物的操作有可能自由地挖出表层和浅材料,并用传感器的矿石分类,使其成为近乎无水的加工流。已证明使用X射线传输(XRT)根据其块状地球化学组成,增加了高级恢复和选择性排序,可以将锰和铁结节分开。这可以提高整体盈利能力,降低了低级和废物的处理,并显着减少了能源需求和相关排放。利用各种矿化类型,具有三阶段的沉积物发展具有很高的潜力。可以将结节的初始处理升级并提供给Ferro -Alloy市场。可以处理较细的盐材料以产生高纯度硫酸锰一水合物(HPMSM)。在支持国内受益人方面,最终可以建造HPMSM设施,以向市场提供电池等级材料或为南非或博茨瓦纳的工厂提供更多的原料。
Pikovskaya 琼脂 预期用途 Pikovskaya 琼脂用于检测溶解磷酸盐的土壤微生物。 摘要 磷酸盐在土壤中以有机和无机形式存在。来自死亡和腐烂植物残骸的有机物富含有机磷源。然而,植物只能以游离形式利用土壤中的磷。土壤磷酸盐由植物根部或土壤微生物提供。因此,溶解磷酸盐的土壤生物在纠正农作物缺磷方面发挥着作用。 Sundara Rao 和 Sinha 改良了 Pikovskaya 琼脂,用于检测土壤中溶解磷酸盐的细菌。 原理 培养基中的酵母提取物提供氮和其他营养物质,以支持细菌生长。葡萄糖作为能量来源。不同的盐和酵母提取物支持生物的生长。溶解磷酸盐的细菌将在此培养基上生长,并在菌落周围形成一个透明区域,这是由于菌落附近的磷酸盐溶解而形成的。配方* 成分 g/L 酵母提取物 0.5 葡萄糖 10.0 磷酸钙 5.0 硫酸铵 0.5 氯化钾 0.2 硫酸镁 0.1 硫酸锰 0.0001 硫酸亚铁 0.0001 琼脂 15.0 最终 pH(25°C 时) 7.0 ± 0.2 *根据性能参数进行调整。 储存和稳定性 将脱水培养基储存在密闭容器中,温度低于 30°C,将配制好的培养基储存在 2°C-8°C 下。避免冷冻和过热。请在标签上的有效期前使用。开封后,请将粉末培养基密闭,以免受潮。 样本采集和处理 对于临床样本,请按照既定指南遵循适当的样本处理技术。对于食品和乳制品样本,请按照既定指南遵循适当的样本处理技术。对于水样,请按照既定指南和当地标准采用适当的技术处理样本。应在施用抗菌剂之前获取样本。使用后,受污染的材料必须通过高压灭菌器进行灭菌,然后才能丢弃。说明
化学系 波普学院(自治学院),Sawyerpuram 628 251,泰米尔纳德邦 附属于 MS 大学,Tirunelveli - 627 012,泰米尔纳德邦,印度 摘要 - 使用八角茴香提取物通过绿色合成方法合成了一种有效的氧化锰纳米粒子。 通过紫外可见光、傅立叶变换红外光谱、原子力显微镜和扫描电镜研究对制备的纳米粒子进行了表征。 氧化锰纳米粒子的紫外可见光光谱显示最大吸收在 250 nm 和 300 nm 左右。 这是因为 n → π* 和 π → π* 跃迁。 氧化锰的 FT-IR 光谱显示 Mn–O 振动峰以 580 cm -1 为中心,而另一个以 1627 cm -1 为中心的明显峰是 Mn 原子上的 O–H 伸缩振动。利用AFM和SEM表征表面形貌。以亚甲蓝作为有机污染物,评价了氧化锰纳米粒子对染料降解的光催化活性。关键词:氧化锰,紫外-可见光,SEM,光催化活性,亚甲蓝1.引言绿色合成是一种环境友好的方法,它代表了化学领域的一种不同思维方式,旨在消除有毒废物,降低能耗,使用水、乙醇、乙酸乙酯等生态溶剂。纳米材料作为新型抗菌剂出现,具有高表面积与体积比和独特的物理化学性质[1]。氧化锰纳米粒子广泛用于污染物传感、药物输送、数据存储、催化和生物医学成像。随着人们对环境污染的关注度日益提高,纳米粒子的绿色合成变得非常重要。基于绿色化学的纳米粒子合成由于其生态友好的性质而受到青睐。氧化锰纳米粒子在催化、离子筛、充电电池、化学传感装置、微电子和光电子等多个领域有着广泛的应用,引起了人们的广泛关注。[2-9] 本研究采用绿色方法制备了氧化锰纳米粒子,并通过紫外-可见光、傅里叶变换红外和扫描电子显微镜分析方法进行了表征。合成的氧化锰纳米粒子在可见光区对染料降解表现出光催化活性。 2.实验 2.1 氧化锰纳米粒子的制备 在典型的反应过程中,将 3.2 g 硫酸锰和 1.0 g 聚乙二醇溶解在 50 mL 水中。然后加热溶液直至溶解。加入6.56g乙酸钠和50mL新鲜制备的八角茴香提取物(Illicium verum)溶液,室温下剧烈搅拌3小时,过滤所得溶液,洗涤、分离纳米颗粒,在90℃真空干燥箱中干燥12小时,保存待进一步研究。2.2.八角茴香提取物的制备 取约10g新鲜八角茴香,用蒸馏水彻底清洗以除去灰尘颗粒。将洗净的八角茴香切成小块,放入带水冷凝器的圆底烧瓶中,在100mL蒸馏水中煮沸1小时。用Whatman No.41过滤提取物,得到纯提取物。 2.3. 光催化活性 ` 在本研究中,使用著名染料亚甲蓝作为探针分子来评估合成纳米粒子在直射阳光下的光催化活性。选择亚甲蓝在665nm处的特征光吸收峰来监测光催化降解过程。实验按照以下步骤进行。 2.4. 步骤 ` 每次测量时,将0.05g样品加入100mL浓度为0.0031g/L的亚甲蓝水溶液中。将悬浮液在黑暗中搅拌约一小时,以确保亚甲蓝在纳米颗粒表面的吸附和解吸平衡建立。然后将溶液暴露在阳光下。在平衡后以10分钟的恒定时间间隔提取3毫升悬浮液,然后离心以将纳米颗粒与上清液分离。用JASCO V650 UV-Vis分光光度计测量上清液的紫外-可见吸收光谱。使用以下公式计算染料降解的百分比:降解百分比=