OPAL-RT 是 PC/FPGA 实时数字模拟器、硬件在环 (HIL) 测试设备和快速控制原型 (RCP) 系统开发领域的全球领导者,用于设计、测试和优化电网、电力电子、电机驱动器、汽车工业、火车、飞机和各个行业以及研发中心和大学中使用的控制和保护系统。opal-rt.com
OPAL-RT 是 PC/FPGA 实时数字模拟器、硬件在环 (HIL) 测试设备和快速控制原型 (RCP) 系统开发领域的全球领导者,用于设计、测试和优化电网、电力电子、电机驱动器、汽车工业、火车、飞机和各个行业以及研发中心和大学中使用的控制和保护系统。opal-rt.com
硬件在环 (HIL) 或控制器在环仿真是一种用于开发和测试控制器和保护系统的技术。目标是验证和认证控制器和保护系统软件程序的功能、性能、质量和安全性。为了实现这一点,被测的实际控制和保护设备通过电流和电压接口连接到模拟器,就像在现实生活中一样。模拟器以高精度和高保真度模拟模型系统在正常和故障条件下的稳态和瞬态行为。通过重现现实,控制器被“欺骗”相信它已连接到真实的物理系统。然后就可以获得在任何操作条件下测试控制器和保护设备所需的所有灵活性。电力硬件在环 (PHIL) 是扩展到电力组件的 HIL 概念。在 PHIL 仿真中,I/O 需要高功率流来测试电力转换器、发电机、FACTS 等。成功可靠地实施 PHIL 和 HIL 仿真需要合理的模型、快速的程序执行、反应时间低于几微秒以及快速的 I/O 通信,因此控制器和保护系统在与实际提交的条件相同的条件下进行测试。您还需要一组工具来监控和与模拟器和可视化工具交互以解释结果(范围、图表、数据记录等)。除了可扩展性之外,这些是 OPAL-RT 的 eMEGAsim (tm) 实时数字模拟器的主要功能。
摘要 — 3 型和 4 型风力发电机的电网形成 (GFM) 控制在电力系统研究中引起了广泛关注;然而,电力电子转换器有限的过流能力继续削弱不断发展的电力系统的电网强度。同步风力发电,也称为 5 型风力发电机 (WTG),通过在可再生能源发电渗透水平非常高的情况下保持电网基本同步,提供了独特的 GFM 解决方案来解决电网整合和电网强度问题。5 型 WTG 通过由变速液力变矩器驱动的同步发电机 (SG) 连接到电网;因此,风力转子以变速模式运行以实现最大发电量,并且发电机轴与电网保持同步。本文在功率硬件在环 (PHIL) 测试环境下开发并测试了 5 型 WTG 的高保真模型。 PHIL 演示表明,5 型风力发电机组本质上可充当 GFM 装置,并且在高风速条件下,与 3 型风力发电机组相比,其功率响应、风轮动力学和效率方面可获得类似的性能。开发的模型还进一步深入了解了 5 型风力发电机组如何有利于平稳过渡到具有高集成度逆变器资源的电力系统。索引术语 — 同步风、电网形成控制、电网强度、5 型、功率硬件在环。
该项目将寻求解决阻碍 BTM DER 用于提供电网服务的一系列障碍。其中,该项目将寻求通过制定控制策略来解决技术障碍,通过控制架构的电力系统模拟来解决性能可靠性问题,并通过技术经济模拟来解决经济障碍。拟议的项目活动将包括行业参与(例如会议、工作组等)、行业分析/研究、控制架构开发(例如设计协调包括 DER 的配电/输电系统组件的架构)、计算机模拟(例如用例场景、输电/配电模拟)、技术经济分析、硬件在环 (HIL) 测试以及聚合器和本地控制器架构的现场测试。
AIM 2024 的赞助商和组织者诚邀提交原创作品,包括但不限于以下主题:执行器、汽车系统、生物工程、数据存储系统、电子封装、故障诊断、人机界面、人机交互/协作、机电一体化系统中的人为因素、工业应用、信息技术、智能系统、机器视觉、制造、微机电系统、微纳米技术、建模和设计、系统辨识和自适应控制、运动控制、振动和噪声控制、神经和模糊控制、光电系统、光机电一体化、原型设计、实时和硬件在环仿真、机器人、传感器、系统集成、交通系统、智能材料和结构、能量收集和其他前沿领域。
在本文中,我们使用非线性滑模控制方法处理四旋翼飞行器的稳定和跟踪问题。首先,借助牛顿-欧拉形式,提出了四旋翼飞行器的动态非线性模型,其中考虑了不同的物理现象和气动力及力矩。然后基于 Lyapunov 理论设计滑模控制器来稳定和跟踪四旋翼飞行器的姿态和位置。进行了几次模拟结果,以显示所提出的建模和非线性控制方法的有效性。即将进行的工作将使用基于元启发式的方法调整和优化所有 SMC 参数。此外,还将研究设计的 SMC 方法的硬件在环 (HIL) 联合仿真。
在本文中,我们使用非线性滑模控制方法处理四旋翼飞行器的稳定和跟踪问题。首先,借助牛顿-欧拉形式,提出了四旋翼飞行器的动态非线性模型的开发,该模型考虑了不同的物理现象和气动力和力矩。然后基于 Lyapunov 理论设计滑模控制器来稳定和跟踪四旋翼飞行器的姿态和位置。进行了几次模拟结果,以显示所提出的建模和非线性控制方法的有效性。即将开展的工作将使用基于元启发式的方法调整和优化所有 SMC 参数。此外,还将研究设计的 SMC 方法的硬件在环 (HIL) 联合仿真。
电力电子转换器的设计、制造和测试。多电平和多相逆变器的 PWM 技术。拓扑和调制策略的创新,例如软开关和低频开关等,以提高性能。GaN、SiC 等 WBG 器件的特性分析。功率转换器的动态建模和闭环控制器设计。高频磁性元件的设计。高速电机的设计和相应的驱动器开发。EMI 和 EMC。以下是应用列表:低压和中压电网 - 可再生能源和储能的整合、电动汽车充电、电机驱动、电池/超级电容器单元电压平衡、医疗应用的高压转换器、微电网、超临界 CO2 发电、空间应用的功率转换器、控制和功率硬件在环等。