具体来说, Oya 等人 [ 3 ] 总结了 9 种木马特征并对 每种特征赋予特定的分值,通过分值的高低来确定 是否存在硬件木马。但该文并未阐述这些特征的性 质及与硬件木马触发机制的联系。 Yao 等人 [ 4 ] 基于 数据流图提出 4 种硬件木马特征,利用硬件木马特 征匹配算法来检测硬件木马,并形成了检测工具 FASTrust 。然而基于数据流图的木马特征构建方 法是从寄存器层面进行的,大量的组合逻辑被忽略, 误识别率较高。 Hasegawa 等人 [ 5 ] 提出了 LGFi, FFi, FFo, PI, PO 等 5 种硬件木马特征,并利用支持向量 机算法来训练并识别木马节点,然而在训练集中, 硬件木马特征集较少,训练集分布并不平衡,即便 是采用动态加权的支持向量机依然存在较大的误识 别情况。 Chen 等人 [ 6 ] 计算待测电路中两级 AONN 门 的分数,认为分数较高的门是硬件木马。该方法对 单触发型硬件木马有效,然而对于多触发条件的硬 件木马无能为力,且未考虑有效载荷电路及其功能。
抽象的脑启发的计算概念(如人工神经网络)已成为古典von Neumann计算机体系结构的有希望的替代品。光子神经网络针对神经元,网络连接和潜在学习光子底物的实现。在这里,我们通过高质量的垂直腔表面发射激光器(VCSELS)的阵列报告了快速和节能光子神经元的纳米光子硬件平台的开发。开发的5×5 VCSEL阵列通过均匀制造以及对激光波长的个人控制,提供了高光学注入锁定效率。注射锁定对于基于VCSEL的光子神经元中信息的可靠处理至关重要,我们通过注入锁定测量值和电流诱导的光谱微调来证明VCSEL阵列的适用性。我们发现我们的研究阵列很容易被调整为所需的光谱均匀性,因此表明基于我们技术的VCSEL阵列可以作为下一代光子神经网络的高能节能和超快速的光子神经元。与完全平行的光子网络相结合,我们的基材有望达到10 s GHz带宽的超快速操作,与其他平台相比,基于激光器的单个非线性转换将仅消耗大约100 fcsel,这是高度竞争性的。
摘要 牵引传动系统作为高速列车的动力系统,是保障高速列车安全稳定运行的关键系统之一。故障测试验证平台是保证高速列车实时故障诊断方法有效应用的重要途径。针对高速列车牵引传动系统故障测试验证平台面临的挑战性问题,分析了故障注入、仿真可靠性评估、算法性能评估、仿真平台实现的方法与技术,并总结了针对上述问题的一些解决方案。在此基础上,提出并搭建了集高速列车实时仿真、故障场景真实模拟、随机故障测试和故障诊断算法评估为一体的高速列车牵引传动系统故障测试验证平台。最后对高速列车安全监测与验证平台未来的研究方向进行了总结和展望。关键词故障测试,验证平台,故障注入,测试评估,高速列车牵引传动系统引用杨超,彭涛,杨春华,陈志文,桂伟华。高速列车牵引传动系统故障测试与验证仿真平台。自动化学报,2019,45(12):2218−2232
图 4 系统总体架构 Fig.4 General framework of system 2.2 Amazon 云计算平台技术介绍 在云计算被提出之前,开发者需要按照需求购买存 储设备和计算设备等硬件设施,但是往往由于计算的不 准确性会造成资源的浪费。云计算的基本概念最初是由 Google 公司提出的。使用云计算平台用户不需要购买任 何硬件设施,因为云计算平台直接提供易交付和易扩展 的 IT 服务,如虚拟服务器、远程数据库以及大容量存储 服务。 本文通过制作服务器的 Docker 文件,将服务器部署 于 Amazon 云端。下面就以 AWS [23] ( Amazon Web Services ,亚马逊云服务)的虚拟服务器( Amazon EC2 )、 可扩展的云存储( Amazon S3 )和云端动态数据库 ( Dynamo DB ) 3 种云平台技术做简要介绍。 Amazon EC2 的 Web 服务接口简单,可以轻松获取 和配置容量。使用该服务,可以完全控制计算资源,并 可以在成熟的 Amazon 计算环境中运行。 Amazon EC2 将 获取并启动新服务器实例所需要的时间缩短至几分钟, 当计算要求发生变化时,可以快速扩展计算容量。 Amazon S3 提供一个简明的 Web 服务界面,用户可 通过它随时在 Web 上存储和检索任意大小的数据。使用 Amazon S3 ,用户只需按实际使用的存储量付费,没有最 低费用和准备成本。 DynamoDB 是一种快速、全面受管的 NoSQL 数据库 服务,它能让用户以简单并且经济有效的方式存储和检 索任何数据量,同时服务于任何程度的请求流量。所有 数据条目均存储在固态硬盘( solid state drives , SSD )中, 具有极高的可用性和耐久性。 2.3 农作物的测量和虚拟模型的生成 虚拟农作物建模对象包括水稻和番茄。为了获取水 稻建模所需的相关参数,于 2015 年和 2016 年在浙江杭 州中国水稻研究所进行了相关试验。选取时期为拔节期
美国陆军 C 4 I 计划和活动是 21 世纪战术数字化和服务行动的基础。负责获取、开发和维护 C 4 I 系统的陆军组织包括美国陆军通信电子司令部、通信电子研究、开发和工程中心以及以下项目执行办公室 (PEO):PEO 指挥、控制和通信战术;PEO 情报、电子战和传感器;以及 PEO 企业信息系统。这些组织提供并维持先进的数字和电子系统,以支持战术环境中的各个任务领域,包括数字战斗指挥、平台和硬件支持、对防空和导弹防御的 C4 支持、对网络作战的 C4 支持、对情报作战的 C4 支持、对火力和效果的 C4 支持、传感器和传感器系统、当前部队无人值守传感器、夜视传感器、无线电和通信系统。
快速增长的物联网(IoT)可以避免通过使用无可持续的电池设备来代替数万亿电池的高成本和环境负担,这些设备数十年来无需维护。要开发无电池的物联网系统,研究人员和制造商需要一个通用,价格合理且易于使用的通用平台。但是,有限的可用性和缺乏支持阻止了以前无电池平台的广泛采用。我们介绍了Riotee,这是一个开源和市售的无电池平台,其中包括多个板,广泛的软件和全面的文档。我们通过机器学习应用程序展示了Riotee的功能,并介绍了涉及学生和客户的用户研究结果,他们对其有用性和可用性评为高度评价。