1 MCA 系 1 尼赫鲁工程学院与研究中心,帕姆巴迪,印度 摘要:目前,芯片设计中跨越了太多的架构界限。没有人找到如何让芯片满足理想消费产品的所有需求的方法。但我认为我们正在接近目标。一种新型芯片现在可以通过擦除现有硬件设计并创建适合运行所需软件的新硬件来适应任何编程要求。可重构处理器是用来描述这些半导体的术语。这些新芯片可以立即重新连接自身,以构建以最高速度执行软件所需的精确硬件。这种新芯片的名称是 CHAMELEON CHIP。索引术语 - 全局概览、通用仿真流程、测试用例生成。
这种转变还通过对系统硬件(包括集成电路、无源元件(电阻器、电容器、电感器)和印刷电路板)的攻击,为我们的通信基础设施带来了新的漏洞。硬件漏洞可能包括:• 在设计过程中插入恶意功能,• 通过因硬件设计弱点或架构缺陷而存在的非法接入点更改系统行为,• 通过非预期的通信(侧)通道提取敏感或秘密信息,• 通过逆向工程窃取知识产权,• 伪造,包括回收、克隆或重新标记的组件或声称是正品的系统,• 修改以插入隐藏功能。硬件安全性一直是一个问题,并且正在开发许多缓解策略。没有一种方法可以解决这个问题,但新方法可以增强或改进现有方法。
无线皮层内脑机接口 (iBCI) 的功效部分受限于记录通道的数量,而记录通道的数量又受植入式系统功率预算的限制。设计能够提供当今有线神经接口的高质量记录的无线 iBCI 可能会导致无意中过度设计,而这又会以牺牲功耗和可扩展性为代价。我们在这里分析了从恒河猴实验性 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者那里收集的神经信号,以了解信号质量和解码器性能之间的权衡。我们为临床可行的 iBCI 提出了一种高效的硬件设计,并建议可以大大放宽当前记录 iBCI 的电路设计参数而不会损失性能。
仿真是任何硬件设计流程中的重要工具。尽管仿真有很多种类型,但周期精确的 RTL 仿真是硬件设计、调试、设计空间探索和验证的主力。许多仿真方法适用于短时间内的中等设计。随着仿真在空间(即更大的设计)和时间(即更长的仿真)上的扩大,仿真效率变得至关重要。在本文中,我们概述了高性能 RTL 仿真器 [4]——基于网表转换的基本信号仿真 (ESSENT)。它的仿真速度非常快,我们正在继续提高其加速技术的适用范围。ESSENT 率先采用了新颖的优化来加速仿真,并且它是开源的 1。在本概述中,我们提供了:仿真背景、ESSENT 功能概述、ESSENT 的简要性能演示,并讨论了其适用性。
无线皮层内脑机接口 (iBCI) 的功效部分受限于记录通道的数量,而记录通道的数量又受植入式系统功率预算的限制。设计能够提供当今有线神经接口的高质量记录的无线 iBCI 可能会导致无意中过度设计,而这又会以牺牲功耗和可扩展性为代价。我们在这里分析了从恒河猴实验性 iBCI 测量和植入 96 通道 Utah 多电极阵列的临床试验参与者那里收集的神经信号,以了解信号质量和解码器性能之间的权衡。我们为临床可行的 iBCI 提出了一种高效的硬件设计,并建议可以大大放宽当前记录 iBCI 的电路设计参数而不会损失性能。
2 Cassidian Electronics 9.3.2 生命周期数据 术语“生命周期数据”被解释为硬件项目的任何描述性文档。硬件项目可以是 COTS、复杂 COTS(包括 §9.2 定义的复杂性变化)、ASIC、PLD(FPGA)。如果硬件项目已根据 DO254 开发,则可以分配为硬件项目生成的生命周期数据以符合 DO254§ 附录 A,表 A-1。本次审查中 DO254§ 附录 A,表 A-1 的重要部分是项目 DO254§10.3 硬件设计数据和项目 DO254§10.3.2 硬件设计表示数据(以及后续数据项目)。评论 1:在所描述的 DO254 上下文中,第 9.3.2 节 [3]“设计数据”中的术语不太清楚与 DO254§附录 A,表 A-1 相关的“COTS 的设备设计数据”的含义。
约翰霍普金斯大学应用物理实验室 (APL) 概念设计与实现部门提供一系列工程、设计和制造能力,支持实验室的使命和广泛的赞助工作。直到 2023 年,约翰霍普金斯 APL 技术文摘才在二十多年内发表过对该部门工作的全面回顾。在这些年里,制造技术和实验室的能力取得了显著的进步,APL 寻求解决的挑战的复杂性也随之增加。本期是两期系列的最后一期,进一步突出了 APL 在硬件设计、机电制造、系统集成和开创性制造科学方面的贡献。这项工作不仅有利于实验室今天的计划和使命,而且还使 APL 能够为解决未来的挑战做出贡献。
❙❙灵活的信号发生器解决方案,从创建复杂的脉冲信号到相位相干多通道雷达信号模拟的交钥匙解决方案 ❙❙高性能频谱分析仪和信号分析仪,内部分析带宽高达 500 MHz,使用¸RTO 1044 示波器作为外部 ADC 时,分析带宽可达 2 GHz ❙❙脉冲测量,包括脉冲调制、趋势分析和脉冲间测量 ❙❙独特的网络分析解决方案,例如用于嵌入式 LO 群延迟测量、脉冲失真测量以及使用四个内部源进行双变频设备 ❙❙具有出色相位噪声性能的信号发生器,用于在雷达和 EW 硬件设计和测试应用中生成数字调制信号或稳定的 LO 信号 ❙❙用于在开发和生产过程中快速表征 T/R 模块的完整测试解决方案
摘要本文介绍了GSCORE,这是一个硬件加速器单元,该单元有效地执行了使用算法优化的3D Gauss-ian剥落的渲染管道。GSCORE基于对基于高斯的辐射场渲染的深入分析的观察,以提高计算效率并将技术带入广泛采用。在此过程中,我们提出了几种优化技术,高斯形状感知的交叉测试,分层排序和下图跳过,所有这些都与GSCORE协同集成。我们实施了GSCORE的硬件设计,使用商业28NM技术进行合成,并评估具有不同图像分辨率的一系列合成和现实世界场景的性能。我们的评估要求表明,GSCORE在移动消费者GPU上实现了15.86倍的速度,其面积较小,能源消耗较低。
摘要:空中操纵将飞行平台的多功能性和速度与移动操作的功能能力相结合,由于需要精确的定位和控制,这引起了挑战。在传统上,研究人员依靠卸下感知系统,这些系统涉及昂贵且不切实际的室内环境。在这项工作中,我们引入了一个新颖的平台,用于自主空中操纵,该平台可易于利用板载感知系统。我们的平台可以在各种室内和室外环境中进行空中操纵,而无需依赖外部感知系统。我们的实验结果表明了平台在不同环境中自主掌握各种对象的能力。这一进步可以通过消除昂贵的跟踪解决方案的需求来显着提高空中操纵应用的可扩展性和实用性。为了加速未来的研究,我们开源3我们的ROS 2软件堆栈和自定义硬件设计,使我们的贡献可用于更广泛的研究社区。