摘要:密集的均匀纳米复合材料Tisicn涂层,其厚度高达15微米,硬度为42 GPa,通过在AR + C 2 H 2 + N 2 -GAS混合物中与Hexamethyld -iSlyld -iSlyld -iSlyld -iSILASEANE(HMDS)混合物中的空心阴极排放中的反应性钛蒸发方法获得了高达42 GPA的硬度。对等离子体组成的分析表明,该方法允许气体混合物所有成分的激活程度的广泛变化,可提供高(高达20 mA/cm 2)的离子电流密度。可以通过改变蒸气– GAS混合物的压力,组成和激活程度,可以广泛改变该方法获得的化学成分,微结构,沉积速率和性能。将C 2 H 2,N 2,HMD和排放电流的频率增加导致涂层形成速率的增加。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。
背景:市面上有各种各样的透明质酸 (HA) 填充剂产品,了解凝胶特性是根据每位患者的审美目标量身定制治疗方案的关键部分。本文介绍了使用 NASHA ® 和 OBT™ 生产的 HA 填充剂的两个主要凝胶特性——强度/硬度和柔韧性,以及它们对组织性能的临床意义。方法:在 25˚C 下,使用 PP25 流变测量系统以动态模式研究了三种 NASHA 凝胶(Restylane ®;Restylane Silk;Restylane Lyft)和四种 OBT 凝胶(Restylane Refyne;Restylane Kysse;Restylane Volyme;Restylane Defyne)。使用频率扫描测量凝胶强度/硬度,以 0.1 Hz 评估 G prime。柔韧性评估使用 1 Hz 下 0.1% 至 10,000% 应变之间的振幅扫描测量,其中 xStrain 是 G prime 和 G double prime 具有相同值的交叉点处的应变值。结果:Restylane、Restylane Silk 和 Restylane Lyft 的 G prime 分别为 701、416 和 799 Pa。Restylane Refyne、Restylane Kysse、Restylane Volyme 和 Restylane Defyne 的 OBT G prime 分别为 70、160、171 和 271 Pa。 xStrain 值分别为 1,442%(Restylane Refyne)、908%(Restylane Kysse)、930%(Restylane Volyme)、761%(Restylane Defyne)、7%(Restylane)、19%(Restylane Silk)和 17%(Restylane Lyft)。结论:OBT 产品具有高柔韧性(耐变形性)和低至中等强度/硬度,适合用于动态面部区域。NASHA 产品具有更高的强度/硬度,具有提升和突出的潜力。总而言之,NASHA 和 OBT HA 凝胶涵盖了广泛的强度和柔韧性。
rs-class.org › 行业 › getIndustry 和钛合金)。2 Cight(镁。11.用布氏硬度计评估硬度。HB:洛氏 HRA、HRB、HRC;维氏 HV。
(发送者)可否认加密提供了非常强的隐私保障:在攻击者胁迫下事后“打开”其密文的发送者能够生成与其选择的任何明文一致的“假”局部随机选择。已知唯一完全有效的公钥可否认加密构造依赖于不可区分混淆 (iO)(目前只能基于亚指数硬度假设)。在这项工作中,我们研究了 (发送者)可否认加密,其中加密过程是量子算法,但密文是经典的。首先,我们在此环境中提出了经典定义的量子类似物。我们给出一个满足该定义的完全有效构造,假设带错学习 (LWE) 问题的量子硬度。其次,我们表明量子计算可以解锁一种从根本上更强大的可否认加密形式,我们称之为完全不可解释性。不可解释性的核心原语是量子计算,对于该计算,没有可证明的有效方法(例如展示“计算历史”)来确定输出确实是计算的结果。我们给出了一个在随机预言模型中安全的构造,假设 LWE 具有量子硬度。至关重要的是,这个概念意味着一种“事前”的针对强制的保护形式,这是经典方法无法实现的特性。
高熵碳化物 (HEC) 备受关注,因为它们是超高温和高硬度应用的有希望的材料。为了发现具有增强屈服强度和硬度的碳化物,需要基于机制的设计方法。在本研究中,提出了位错核原子随机性作为提高硬度的机制,其中位错核处不同元素之间的随机相互作用使位错更难滑移。基于密度泛函理论计算了 a ∕ 2 ⟨ 1 ̄ 10 ⟩ {110} 刃位错的 Peierls 应力,其中通过增加位错核处的元素数量来增加原子的随机性。结果表明,Peierls 应力在统计上随着元素数量的增加而增加,表明加入更多元素可能会产生更高的硬度。基于这一指导原则,我们制备了三种八阳离子 HEC(Ti、Zr、Hf、V、Nb、Ta、X、Y)C(X、Y = Mo、W、Cr、Mo 或 Cr、W),其成分由从头计算的形成焓和熵形成能力决定。单相致密陶瓷均表现出约 40 GPa 的高纳米压痕硬度。位错核心处不同元素之间的随机相互作用为提高结构陶瓷的硬度提供了一种机制。
纳米铜烧结是实现宽带隙半导体电力电子封装的新型芯片粘接与互连解决方案之一,具有高温、低电感、低热阻和低成本等优点。为了评估烧结纳米铜芯片粘接与互连的高温可靠性,本研究采用高温纳米压痕试验表征了烧结纳米铜颗粒的力学性能。结果表明:首先,当加载速率低于0.2 mN ⋅ s − 1时,烧结纳米铜颗粒的硬度和压痕模量迅速增加随后趋于稳定,当加载速率增加到30 mN时,硬度和压痕模量降低。然后,通过提取屈服应力和应变硬化指数,得到了烧结纳米铜颗粒的室温塑性应力-应变本构模型。最后,对不同辅助压力下制备的烧结纳米铜颗粒在140 ˚C – 200 ˚C下进行高温纳米压痕测试,结果表明辅助压力过高导致硬度和压痕模量的温度敏感性降低;蠕变测试表明操作温度过高导致稳态蠕变速率过大,对烧结纳米铜颗粒的抗蠕变性能产生负面影响,而较高的辅助压力可以提高其抗蠕变性能。
量子假体性在许多量子信息的许多领域中都发现了应用,从纠缠理论到混沌量子系统中的乱拼图现象模型,以及最近在量子cryp-forgraphy的基础上。kretschmer(TQC '21)表明,即使在一个没有经典的单向功能的世界中,伪随机状态和伪单位都存在。到今天为止,所有已知的构造都需要经典的加密构建块,这些构建块本身就是单向函数存在的代名词,并且在逼真的量子硬件上实施也很具有挑战性。在这项工作中,我们寻求同时在这两个方面取得进步,这是通过将量子伪随机与古典密码学脱在一起的。我们引入了一个称为哈密顿相状态(HPS)问题的量子硬度假设,这是解码随机瞬时Quantum quantum多项式时间(IQP)电路的输出态的任务。汉密尔顿相状的状态只能使用Hadamard大门,单量子Z旋转和CNOT电路生成非常有效的生成。我们表明,我们的问题的硬度减少到了最差的概率版本,我们提供了证据表明我们的假设是完全量子的。意思是,它不能用于构建单向功能。我们还显示了信息的硬度,当仅通过证明我们的集合的近似t-deSign属性可用时,就可以使用信息硬度。在此过程中,我们分析了伪元单位的天然迭代构建,类似于JI,Liu和Song的候选人(Crypto'18)。最后,我们证明了我们的HPS假设及其变体使我们能够有效地构建许多假量子原始原始,从伪随机状态到量子伪enentangremprement,到pseudorandom limitories,甚至是原始词,例如与Quan-tum-tum tum tum tum tum tum tum tum tum tum tum keys。
通讯作者:Tolumoye J. Tuaweri摘要这项研究是关于使用绿色抑制剂和减肥方法对海水和土壤环境中低碳钢C-1026行为的腐蚀。绿色植物提取物是香气叶(SL)(ocimum gratissimum),木薯叶(Cl)(manihot esculenta)和neem叶(nl)(azadirachta indica)。添加了一定数量的菠萝汁,以增强对MS表面的抑制作用。研究的参数包括体重减轻,腐蚀速率,抑制效率,pH分析,Brinell硬度测试,表面粗糙度,扫描电子显微镜,电力动力学极化测量和傅立叶变换红外光谱。研究表明,绿色植物提取物在低碳钢C-1026上表现出良好的抑制效率。neem叶被认为具有最大抑制效率。添加绿色植物抑制剂,腐蚀速率降低。 此外,它们影响了低碳钢表面的硬度和表面粗糙度。 结果表明,绿色植物中的化学复合物在石油和天然气管道上具有一些抑制性。 关键词:化学复合物,腐蚀,腐蚀抑制剂,碳钢,绿色植物叶。腐蚀速率降低。此外,它们影响了低碳钢表面的硬度和表面粗糙度。结果表明,绿色植物中的化学复合物在石油和天然气管道上具有一些抑制性。关键词:化学复合物,腐蚀,腐蚀抑制剂,碳钢,绿色植物叶。