摘要 在两个农业季节中,进行了一项田间试验,以量化本地细菌接种剂对不同氮 (N) 施肥量下小麦作物生长、产量和品质的影响。小麦在实验技术转移中心 (CETT-910) 的田间条件下播种,该中心是来自墨西哥索诺拉州亚基谷的代表性小麦作物区。试验采用不同剂量的氮 (0、130 和 250 kg N ha −1 ) 和细菌联合体 (BC) (枯草芽孢杆菌 TSO9、B. cabrialesii subsp. tritici TSO2 T 、枯草芽孢杆菌 TSO22、B. paralicheniformis TRQ65 和 Priestia megaterium TRQ8) 进行。结果表明,农业季节影响叶绿素含量、穗大小、每穗粒数、蛋白质含量和全麦粉黄度。在施用 130 和 250 kg N ha −1(常规氮肥剂量)的处理中,叶绿素和归一化植被指数 (NDVI) 值最高,冠层温度值较低。氮肥剂量影响小麦黄色浆果、蛋白质含量、十二烷基硫酸钠 (SDS) 沉降量和全麦粉黄度等品质参数。此外,在 130 kg N ha −1 的施用量下,施用本地细菌联合体可使穗长和每穗粒数增加,从而提高产量(与未接种处理相比,每公顷增产 1.0 吨),且不影响谷物品质。总之,使用这种细菌联合体有可能显著促进小麦生长、产量和品质,同时减少氮肥施用,从而为提高小麦产量提供一种有前途的农业生物技术替代方案。
X射线源在强度和时间域都继续前进,从而开放了分析物质结构和特性的新方法,前提是可以有效地记录所得的X射线图像。从这个角度来看,我们关注像素区域X射线检测器的特定局限性。尽管像素区域X射线检测器也在近年来进步,但许多实验仍然受到限制。特别是,需要以GHz速率获取连续图像的检测器;在同一图像中以数百kHz的帧速率在同一图像中可以准确测量单个光子和数百万光子的检测器;并有效地捕获了非常硬X射线的图像(20 keV至数百keV)。最新检测的数据量和数据速率超过了大多数实用的数据存储选项和读取带宽,因此需要在线处理数据或代替全帧全帧读数。
项目描述铜和黄金等优质金属部署了许多电子来进行电力,但是延性(或“软”),尤其是在高温下。陶瓷材料是“硬”和耐热的,但电气导体不良。我们是否可以找到具有良好电导率的“硬”金属或合金,可以在高温下抵抗机械变形?远不是一个学术问题,一个肯定的答案也将对您产生切实的实际后果!鉴于对数据存储的需求不断增加,硬盘驱动器(HDD)背后的技术已被推到极限。热辅助内存记录(HAMR)使用金属近场换能器(NFT)在很小的(一些纳米!)上写入磁性域,然后增加HDD容量。由于其电气和化学性能,黄金是当前选择的材料,但是机械缺陷限制了其对当前HAMR技术的可靠性。“硬”金属或合金具有与黄金相当的特性,但不像黄金那样“柔软”。
阵发性夜间血红蛋白尿症(PNH)是一种罕见的,威胁生命的疾病,可能影响任何年龄的人,尽管通常在年轻人中最常见于30年代和40多岁的年轻人。由于在磷脂酰肌醇聚糖A(PIG-A)基因中获得的突变而发生,因此导致了至关重要的末端补体抑制剂在细胞表面上的缺乏。在血细胞中缺乏这些蛋白质会触发不受控制的替代补体激活,这可能导致血细胞过早破坏(溶血症),溶血性贫血,血栓形成,最终导致死亡。PNH中的溶血分别以两种形式发生:在血管内(IVH)或血管外部(EVH)。IVH可以导致血栓形成,在补体抑制剂可用性之前,这是PNH患者死亡的主要原因。2,3
肌腱病和肌病是影响大量个体的普遍肌肉骨骼疾病。理解肌腱病和肌病的新发展强调了对各种生物标志物,microRNA,LNCRNA和细胞反应的认可,这些反应涉及其发展。高级技术现在可以对组织血管,回声和弹性进行定量评估,从而提供详细而精确的数据,从而增强我们对各种疾病过程的理解。此外,即将进行的治疗方法包括干细胞,外泌体,生物材料和纳米材料。这个特刊“肌腱病和肌病”突出了肌腱病和肌病的发病机理,诊断和治疗的进展。我们邀请全世界的专家提交有关此主题的最新研究。原始文章和评论都是同样受到欢迎的贡献。
1)Hattori N,Funayama M,Imai Y等人:PAR -Kinson病的发病机理:从单基因家族性PD到生物标志物的提示。J神经传输(维也纳),2024年2)Funayama M,Ohe K,Amo T等:常染色体显性后期 - 发病帕金森氏病中的CHCHD2突变:GE -NOME - 广泛的链接和测序研究。柳叶刀神经14:274 - 282,2015年3月3日)Kitada T,Asakawa S,Hattori N等:PAR中的突变 - 亲属基因引起常染色体隐性膜肌parkinsonism。自然392:605 - 608,1998 4)Oji Y,Hatano T,Ueno Si等人:Saposin d do中的变体 - 与帕金森氏病有关的Prosaposin Gene的主要基因。Brain 143:1190 - 1205,2020 5)Yoshino H,Li Y,Nishioka K等人:基因型 - 帕金森氏病与PRKN变体的关系。 Neuro - biol Aging 114 : 117 – 128, 2022 6 ) Hattori N, Kitada T, Matsumine H et al : Molecular genetic analysis of a novel Parkin gene in Japanese families with au - tosomal recessive juvenile parkinsonism : evidence for varia - ble homozygous deletions in the Parkin gene in affected indi - viduals. Ann Neurol 44:935 - 941,1998 7)Daida K,Funayama M,Billingsley KJ等人:Long - Read - Read Se -quencing -quencing -wecorl prkn Parkinson病中的复杂结构变体。 MOV DISORD 38:2249 - 2257,2023 8)Brain 143:1190 - 1205,2020 5)Yoshino H,Li Y,Nishioka K等人:基因型 - 帕金森氏病与PRKN变体的关系。Neuro - biol Aging 114 : 117 – 128, 2022 6 ) Hattori N, Kitada T, Matsumine H et al : Molecular genetic analysis of a novel Parkin gene in Japanese families with au - tosomal recessive juvenile parkinsonism : evidence for varia - ble homozygous deletions in the Parkin gene in affected indi - viduals.Ann Neurol 44:935 - 941,1998 7)Daida K,Funayama M,Billingsley KJ等人:Long - Read - Read Se -quencing -quencing -wecorl prkn Parkinson病中的复杂结构变体。MOV DISORD 38:2249 - 2257,2023 8)
治疗方法(作用机制) 1)抑制产生毒性蛋白质的DNA/RNA(ASO、shRNA等)⇒Tofersen,一种用于治疗ALS的ASO(FDA于2023年批准) 2)编辑异常的DNA/RNA使其正常化(CRISPR系统,一项诺贝尔奖获奖技术)⇒镰状细胞病/β-地中海贫血的体外基因组编辑疗法(MHRA于2023年批准) 3)将DNA/RNA引入细胞以补充(过度表达)缺失的蛋白质⇒使用AAV9过度表达用于SMA的正常SMN基因(PMDA于2020年批准)
成长事业推进部 下一代课程负责人 〒920-8203 金泽市仓月 2-1(石川县工业技术研究中心企划指导部内) 电子邮箱:semise@irii.jp 电话:(076)267-8081 传真:(076)267-8090