人们对人类在自主运动控制过程中脊髓的电生理活动知之甚少。我们提出了一种新方法,使用植入的硬膜外电极记录自然运动(包括地面行走)期间人类脊髓的电生理活动。作为对接受脊髓刺激评估的慢性疼痛患者的测试试验的一部分,从植入的硬膜外电极记录脊髓电图 (SEG)。将硬膜外导线的外化端连接到外部放大器以捕获 SEG。使用无线传感器收集上肢和下肢的肌电图和加速度数据,并将其同步到 SEG 数据。指示患者进行各种手臂和腿部运动,同时收集 SEG 和运动学数据。这项研究证明了对执行运动任务的人类受试者进行硬膜外脊髓记录的安全性和可行性。
什么是量子系统?考虑电子的波功能(我们称之为“单个粒子波功能”),并假设它包含n波弹丸。如果我们将所有波弹包穿过电场,所有的都会偏转,就好像每个波动场都包含一个电子一样。但是,如果我们带任何两个波动盒彼此亲近旅行,他们不会彼此排斥,仿佛至少其中一个不包含任何费用。试图解决量子力学(QM)的测量问题时,提出了不同的相互作用,每一个都带有特定的本体论。但是,只有一种解释明确注意以上所提及的矛盾。这种解释是由S. Gao提出的,他将其命名为“随机不连续运动”(RDM),因为它假定存在一个随机跳到位置的粒子的存在。粒子具有各种类型的粒子,质量,电荷,磁动量等的物理特性。它在“瞬时条件”的控制下跳跃,Gao没有提供详细信息。随着该解释解决的QM问题,本文揭示了与纠缠和特殊相对论的困难。
图1。实验框架。(a)在左侧,行为实验平台的示意图。当动物执行机器人覆盖,掌握和拉动任务时,我们测量了施加到机器人接头,全LIMB运动学,肌电图(EMG)活性的3D力,来自手臂和手的八个肌肉,以及来自感觉运动区域的皮层内信号。实验方案的右,概念方案:(1)在控制计算机上运行的解码器确定了运动的尝试,(2)(2)将电脊髓刺激传递到适当的脊髓根。(3)刺激产生了我们在离线记录和分析的手臂和手动运动。(b)任务的示意图。猴子经过训练,可以抓住,掌握并拉出放置在机器人臂末端效应子上的目标对象。我们认为当目标空间阈值在拉动过程中越过时,我们认为运动完整。版权所有JemèreRuby。