学生迅速采用了生成的AI工具,例如学生的ChatGpt有可能破坏高等教育部门,学者们对潜在的对学术诚信的潜在威胁提出了担忧。本文通过研究学生的看法和使用生成性AI来协助他们进行评估,对对AI工具的反应进行紧迫的讨论。基于337名澳大利亚大学学生的调查,这项研究发现,超过三分之一的学生使用聊天机器人进行评估协助,不一定认为这是对学术诚信的违反。该研究进一步研究了不同的心理社会因素,例如学习动机,困扰或韧性与学生使用AI聊天机器人有关,以确定环境条件或推动其使用的风险因素。的调查结果表明,高等教育部门不仅面临挑战,不仅要定义有关道德和学术上诚实的方法,以使用和将生成的AI工具纳入大学教育和评估,还可以重新考虑评估文章的设计。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
胆囊癌 (GBC) 是一种罕见但恶性程度最高的胆道肿瘤。它通常在晚期才被诊断出来,常规治疗方法并不令人满意。作为蛋白酶体抑制剂,硼替佐米 (BTZ) 在 GBC 中表现出优异的抗肿瘤能力。然而,其长期治疗效果受到其耐药性、稳定性差和高毒性的限制。本文报道了 BTZ 封装的 pH 响应性雌酮共聚物纳米粒子 (ES-NP (BTZ; Ce6)) 用于 GBC 特异性靶向治疗。由于 GBC 中雌激素受体表达高,ES-NP (BTZ; Ce6) 可以通过 ES 介导的内吞作用迅速进入细胞并聚集在细胞核附近。在酸性肿瘤微环境 (TME) 和 808 nm 激光照射下,BTZ 被释放,Ce6 产生 ROS,从而破坏“反弹”反应通路蛋白,如 DDI2 和 p97,从而有效抑制蛋白酶体并增加细胞凋亡。与使用 BTZ 单药治疗的传统治疗相比,ES-NP (BTZ; Ce6) 可以在较低 BTZ 浓度下显著阻碍疾病进展并提高其耐药性。此外,ES-NP (BTZ; Ce6) 在患者来源的异种移植动物模型和其他五种类型的实体肿瘤细胞中表现出类似的抗肿瘤能力,揭示了其作为广谱抗肿瘤制剂的潜力。
1 德国硼中子感染治疗学会 DGBNCT eV,德国埃森 45122; hey@uni-leipzig.de(EH-H.); luigi.panza@uniupo.it (LP); daniela.imperio@uniupo.it (DI); pierluigi.mauri@itb.cnr.it (下午); andrea.wittig@med.uni-jena.de (AW) 2 杜伊斯堡-埃森大学医学院放射治疗系 NCTeam,德国埃森 45147 3 冈山大学中子治疗研究中心,日本冈山 700-8530 4 UGA/Inserm U 1209/CNRS UMR 5309 联合研究中心,高级生物科学研究所,38700 拉特龙什,法国; lucie.sancey@univ-grenoble-alpes.fr 5 莱比锡大学化学与矿物学系无机化学研究所,04109 莱比锡,德国; martin.kellert@uni-leipzig.de 6 意大利东皮埃蒙特大学药学系,13100 韦尔切利 7 西班牙塞维利亚大学医学生理学和生物学系,41004 塞维利亚; mbalcerzyk@us.es 8 塞维利亚大学国家加速器中心 - CSIC - 安达卢西亚自治区,41004 塞维利亚,西班牙 9 生物医学技术研究所(ITB-CNR),93,20090 塞格拉泰,意大利; giovanna.rizzo@itb.cnr.it (希腊); elisa.scalco@itb.cnr.it (ES)10 埃森大学医院核医学科,德国埃森 45147; ken.herrmann@uk-essen.de 11 蛋白质组学和代谢组学实验室,ELIXIR 基础设施,国家研究委员会 (ITB-CNR),20090 塞格拉泰,意大利; antonella.depalma@itb.cnr.it 12 意大利比萨高等圣安娜大学生命科学研究所,56127 13 德国耶拿弗里德里希席勒大学耶拿医院放射治疗和放射肿瘤学部,07743 耶拿,德国 * 通讯地址:wolfgang.sauerwein@dgbnct.de
摘要 烧结材料由于工艺简单而具有生产率优势,但由于强度不足而不适用于高负荷齿轮。为了提高烧结材料的疲劳强度,作者开发了无需二次加工即可实现高密度的液相烧结技术。在本研究中,评估了硼添加量(0-0.4 mass%)对 Fe-Ni-Mo-BC 烧结渗碳材料滚动接触疲劳强度的影响。此外,为了仅评估硼添加效果而不考虑密度的影响,控制每个试样的烧结密度相同。在本研究的测试范围内,硼添加量为 0.1 mass% 的材料滚动接触疲劳极限(p max )lim 表现出最高值,超过了 1700 MPa。该值不仅明显高于无硼材料的(p max )lim(1100 MPa),而且与锻钢的(p max )lim(1900 MPa)相比也是极高的值。从孔隙结构和材料结构两个角度研究了0.1B辊的(p max )lim明显较高的原因。孔隙结构方面,无硼辊的孔隙形状为不规则形状,而0.1B辊的孔隙形状为球形。通过对滚动接触疲劳试验中辊内部的正交剪切应力进行CAE分析的结果发现,0.1B辊孔隙周围的正交剪切应力的最大值比无硼辊低约35 %。该结果表明,0.1B辊比无硼辊更不容易出现裂纹。即,认为0.1B材料的孔隙形状对滚动接触疲劳强度的提高有影响。
摘要 原子层沉积(ALD)已成为当代微电子工业中不可或缺的薄膜技术。ALD 独特的自限制逐层生长特性使该技术能够沉积高度均匀、共形、无针孔的薄膜,并且厚度可控制在埃级,尤其是在 3D 拓扑结构上。多年来,ALD 技术不仅使微电子器件的成功缩小,而且还使许多新颖的 3D 器件结构成为可能。由于 ALD 本质上是化学气相沉积的一种变体,因此全面了解所涉及的化学过程对于进一步开发和利用该技术至关重要。为此,我们在本综述中重点研究 ALD 的表面化学和前体化学方面。我们首先回顾了气固 ALD 反应的表面化学,并详细讨论了与薄膜生长相关的机制;然后,我们通过比较讨论 ALD 工艺中常用的前体来回顾 ALD 前体化学;最后,我们有选择地介绍了 ALD 在微电子领域的一些新兴应用,并对 ALD 技术的未来进行了展望。
- 奥地利航天局(ASA)/奥地利。- 比利时科学政策办公室(BELSPO)/比利时。- 机器建筑中央研究所(TSNIIMASH)/俄罗斯联合会。- 北京跟踪与电信技术研究所(CLTC/BITTT)/中国/中国卫星卫星发射和跟踪控制将军/中国。- 中国科学院(CAS)/中国。- 中国太空技术学院(CAST)/中国。- 英联邦科学与工业研究组织(CSIRO)/澳大利亚。- 丹麦国家航天中心(DNSC)/丹麦。- deciênciae tecnologia Aerospacial(DCTA)/巴西。- 电子和电信研究所(ETRI)/韩国。- 欧洲剥削气象卫星(Eumetsat)/欧洲的组织。- 欧洲电信卫星组织(Eutelsat)/欧洲。- 地理信息和太空技术发展局(GISTDA)/泰国。- 希腊国家太空委员会(HNSC)/希腊。- 希腊航天局(HSA)/希腊。- 印度太空研究组织(ISRO)/印度。- 太空研究所(IKI)/俄罗斯联合会。- 韩国航空航天研究所(KARI)/韩国。- 通信部(MOC)/以色列。- 穆罕默德垃圾箱拉希德航天中心(MBRSC)/阿拉伯联合酋长国。- 国家信息与通信技术研究所(NICT)/日本。- 国家海洋与大气管理局(NOAA)/美国。- 哈萨克斯坦共和国国家航天局(NSARK)/哈萨克斯坦。- 国家太空组织(NSPO)/中国台北。- 海军太空技术中心(NCST)/美国。- 荷兰太空办公室(NSO)/荷兰。- 粒子与核物理研究所(KFKI)/匈牙利。- 土耳其科学技术研究委员会(Tubitak)/土耳其。- 南非国家航天局(SANSA)/南非共和国。- 太空和高中气氛研究委员会(Suparco)/巴基斯坦。- 瑞典太空公司(SSC)/瑞典。- 瑞士太空办公室(SSO)/瑞士。- 美国地质调查局(USGS)/美国。
关于 Ribbon Ribbon Communications (Nasdaq: RBBN) 为全球服务提供商、企业和关键基础设施部门提供通信软件、IP 和光纤网络解决方案。我们与客户密切合作,帮助他们实现网络现代化,以在当今智能、始终在线和数据饥渴的世界中提高竞争地位和业务成果。我们创新的端到端解决方案组合提供无与伦比的规模、性能和灵活性,包括从核心到边缘的以软件为中心的解决方案、云原生产品、领先的安全和分析工具,以及适用于 5G 的 IP 和光纤网络解决方案。我们始终密切关注对环境、社会和治理 (ESG) 事务的承诺,并向我们的利益相关者提供年度可持续发展报告。要了解有关 Ribbon 的更多信息,请访问 rbbn.com。