摘要这项研究研究了几种玻璃成分作为伽马射线屏蔽物质的适用性。所测试的组合物具有不同的ZnO浓度,特别是(60-X)B 2 O 3 - 10NA 2 O —15SIO 2 –15SIO 2-5AL 2 O 3 - (x + 10)ZnO(其中x = 5、10、15和20 mol%)。测量以0.6642、1.1776和1.3343的能量水平进行,从CS 137和CO 60点源辐射,以及闪烁检测器[NAI(TL)]。我们研究了与γ辐射屏蔽相关的关键特性,确定有效原子数(z eff),电子密度(N EL),半价值层(HVL),线性衰减(μ)和质量衰减(μm)系数(μm)系数和平均自由路径(λ)。我们的结果表明,随着Zn浓度从15摩尔%上升到35 mol%,在检查中的眼镜从2.12至2.77 g/cm3变得更密集。此外,所有玻璃成分都提供了针对指定能级的伽马辐射的足够保护。µ的值从0.157上升到0.214 cm -1(0.6642 meV),从0.119升至0.160 cm -1(1.1776 meV),并从0.114 cm -1(1.1776 meV),从0.114 cm -1(1.3343 meV)上升到0.160 cm -1(1.1776 meV)。对于样品B1和B4,观察到的HVL值从4.41、5.84和6.12 cm降至3.21、4.31和4.61 cm,分别为0.6642、1.1736和1.3343 MEV。与经常使用的玻璃和混凝土样品相比,经过测试的材料中显示的屏蔽能力更高。该研究强调了这些玻璃成分作为可以掩盖伽马辐射的实用材料的潜力。
摘要:额叶聚合(FP)是一种比高压釜低的能量成本的热固性塑料的方法。已经讨论了同时产生多个聚合阵线传播的潜力,这是一种令人兴奋的可能性。但是,尚未证明在同时启动两个以上的FP。多点启动可以使大规模材料制造和独特的图案生成。在这里,作者提出了激光图案的光热加热,作为在2-D样品中多个位置同时启动FP的方法。碳黑色颗粒被混合到液体树脂(双环戊二烯)中,以增强从样品上的Ti:蓝宝石激光(800 nm)中的光吸收。激光是通过在启动点之间快速转向来分配的,从而产生了多达七个同时启动点的聚合。此过程导致形成由正面碰撞导致的对称和不对称接缝图案。作者还提供并验证一个理论框架,以预测前碰撞形成的接缝模式。此框架允许通过反向解决方案设计新模式,以确定形成所需模式所需的启动点。这种方法的未来应用可以使新型复合材料样式材料的快速,节能生产。关键字:额叶聚合,图案材料,光热启动,激光启动,双环齿丹■简介
摘要:BNCT是一种高线性 - 能量转移疗法,可促进肿瘤指导的辐射递送,同时通过硼化合物对肿瘤细胞的生物靶向,在很大程度上占相邻的正常组织。在正常细胞中有限积聚的硼的肿瘤特异性积累是成功递送的症结。鉴于这一点,开发了具有高选择性,易于递送和大型硼有效载荷的新型硼酸化合物,仍然是一个积极研究的领域。此外,人们对探索BNCT的免疫原性潜力越来越兴趣。在这篇综述中,我们讨论了BNCT,传统和下一代硼化合物的基本放射生物学和物理方面,以及探索BNCT临床适用性的翻译研究。此外,我们深入研究了新型硼剂时代BNCT的免疫调节潜力,并检查创新的途径,以利用BNCT的免疫原性,以改善困难差异恶性肿瘤的预后。
(10 -5 ) 钴铁硼 10 50 5 6.67 14.60 175.01 55.64 77.63 3.68 钴铁硼 5 50 5 8.46 29.48 384.88 64.82 135.41 3.22 钴铁硼 5 50 10 4.56 17.88 108.74 75.02 27.16 1.31 钴铁硼 * 5 50 10 4.65 14.77 78.57 87.39 9.91 0.53 钴铁硼 5 100 10 8.95 15.40 197.38 69.82 59.57 1.43 镍铁 10 50 5 8.72 2.66 10.78 215.17 -12.42 -1.95 镍铁 2.5 50 5 9.15 35.98 148.76 221.25 -180.37 -3.91 镍铁 2.5 50 10 4.58 27.30 54.35 230.17 -70.75 -3.02
关于 Zydus Zydus Lifesciences Ltd. 的首要目标是让人们自由地过上更健康、更充实的生活,是一家创新的全球生命科学公司,发现、开发、制造和销售广泛的医疗疗法。该集团在癌症相关疗法方面占有重要地位,并提供包括细胞毒性、支持性和靶向药物在内的广泛解决方案。该集团在全球拥有 27,000 多名员工,其中包括 1,400 名从事研发的科学家,其使命是通过影响生活的优质医疗解决方案,开启生命科学的新可能性。该集团渴望通过突破性的发现改变生活。有关更多详细信息,请访问 www.zyduslife.com 关于 Viwit Pharmaceuticals Viwit 是一家创新驱动的生物制药和医疗保健公司,拥有一体化的研发、生产和营销系统。Viwit 致力于构建药品创新和商业化的平台,建立服务于大众医疗保健需求的生态系统。 Viwit 最初是一家硼烷生产公司,现已发展成为一家医疗保健公司,提供 API 和药品开发和制造以及 CDMO 服务。Viwit
图4A描绘了具有不同BNNS分数的质量化的BNNS@环氧复合板。在用BNN掺杂之前,环氧树脂板看起来是黄色和透明的。然而,掺杂后,颜色变为白色,随着BNNS浓度的增加,板的透明度会降低。也可以推断出BNN均匀分散在整个环氧树脂中,从而导致均匀的复合材料。图4B说明了用于评估BNN@Epoxy复合板的Terahertz辐射屏蔽有效性的实验设置。实验设置由Terasense源组成,该源以100 GHz的频率发出连续波,其输出功率为80 MW,光电传输天线和THZ-B检测器(Gentec-EO)。这些组件由LabView Software(Gentec-eo)无缝协调,以从源头获得有效的数据采集和处理。值得注意的是,发射的辐射通过由BNNS@环氧复合板制成的衰减器,精心设计,以满足实验的特定要求。
聚(芳基醚),形成了大量的大环寡聚物。[8,9]在反应的初始阶段,双足与碳酸钠或碳酸钾(或氢氧化钾)反应,从而产生了许多盐沉淀,从而阻碍了反应混合物的搅拌。由于盐的溶解度差而产生的高稀释条件,在反应混合物中形成了环状化合物。这意味着反应中的速率控制步骤是盐的溶解。Miyatake和Hlil发现,可以使用高速均质器可以改善这种反应系统中的环化问题。高强度混合增加了盐的表面积,因此有助于其溶解。[9]在几分钟内获得具有低分子量分布的非常高的分子量多形成量。与合成的线性聚(芳基醚)的典型反应相反,该特定梯子聚合物的形成更为复杂。在方案1中可以看出,两个单体都有四个反应性组。因此,四苯酚盐的溶解度甚至低于双苯酚和循环的溶解度,更容易形成。另外,一个单体中多个反应组的存在增加了交联的可能性。也观察到,如果它们的分子量高于10 000 da,则聚合物或循环将从反应混合物(如果将DMAC或DMF用作溶剂)中沉淀出来。我们发现在这一点上,对于较低的单体和低聚物浓度,常见的级增长聚合反应进一步进行并不容易,因为循环形成更容易形成。此外,交联发生迅速发生,因为OH和F组从沉淀的聚合物表面随机伸展,其链条折叠,线圈和包装在一起,并与其他OH和F组随机反应。
基于生物的塑料,主要是多羟基烷烃(PHAS),为石油衍生的塑料提供了充满希望的替代品。第三代(3G;微藻/蓝细菌)生物量由于生物量快速生产力和代谢多功能性而变得非常重要。微藻可以通过利用CO 2和废水来产生PHA,并将它们确定为生物塑性生产的高度有希望和环保系统。这项全面的综述提供了对微藻-PHA生产的全面见解,从对物理和文化条件的优化到有效的PHA纯化过程。批判性审查还研究了培养策略,代谢工程和生物反应器发展方面的最新进步,这可能会导致更可持续和渐进的基于微藻的生物塑料积累。已经解决了藻类生物量产生通过综合废水处理的PHA积累的有效性。本综述研究了数学建模和新兴人工智能在推进基于藻类的PHA生产过程中的作用。最后,审查以讨论经济和社会挑战,生命周期分析以及先进微藻衍生的生物塑料生产的研究和开发前景的讨论结束,并在工业规模上预测了对经济上可行和可持续的基于微藻的PHA生产的潜在解决方案的预测。