出版物: [1] N. Rodriguez-Alvarez 等人,“前馈神经网络去噪应用于 Goldstone 太阳系雷达图像”,遥感,2022 年 2 月 [2] CG Lee 等人,“地月空间碎片雷达的能力和可行性”,IEEE 航空航天 2023 [3] Y.-M. Yang 等人,“使用深空网络和开环跟踪测量实现地月目标检测”,IEEE 航空航天 2023 [4] CG Lee 等人,“带有 GSSR 的地基地月空间碎片雷达”,IGARSS 2023 - 2023 IEEE 国际地球科学与遥感研讨会,2023 年 [5] Y.-M. Yang 等人,“背景杂波对使用深空网络开环跟踪测量进行地月目标检测的影响”,IGARSS 2023 - 2023 IEEE 国际地球科学和遥感研讨会,2023 年 PI/任务经理。联系信息:Clement Lee 818-354-5587 clement.g.lee@jpl.nasa.gov
缩写/首字母缩写:DR - 糖尿病性视网膜病,QALY - 质量调整后的生活年,ICER - 渐进的成本效益比率,ADA - 美国糖尿病协会,AAO - 美国AAO - 美国眼科学会,TRI - TRI - TRI - TRI - AI-AI-IDIMATIC,AI - AI人工智能,POMD POMDP POMDP-POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDP POMDPP edema, NIN-DR - Non-intervention-needed DR, IN-DR – Intervention-needed DR, PT – Post- treatment, BL – Blindness, DE – Death, NPDR – Non-proliferative DR, PDR – Proliferative DR, WW – Wait and watch, CS – Clinical screening, WTP – Willingness to pay, HHS – Harris Health System, EMR – Electronic medical record, IRB – Institutional review董事会,n - 数字。
轨道碎片是指任何绕地球运行的人造太空物体,不再具有任何有用的用途 [1]。轨道碎片对所有太空任务都构成威胁,包括情报界 (IC) 的任务。低地球轨道 (LEO) 的平均撞击速度为 22,500 MPH,即使是最小的碎片也会造成严重损害,0.2 毫米的油漆碎片撞击 STS-71 时产生的直径为 3.8 毫米的坑洞就是明证 [2]。目前,有超过 1 亿个大于 1 毫米的物体绕地球运行,[3, 4] 但据估计,目前追踪到的可能造成任务终止损害的碎片不到 1% [5]。此外,由于近地空间环境的动态和多变性,预测碎片的轨迹极其困难,需要持续监测 [6]。虽然目前可以探测和追踪大于 10 厘米的碎片,但目前的能力不足以追踪较小的碎片 [7]。太小而无法追踪的碎片通常被称为“致命的不可追踪碎片”(LNT),[8] 会对航天器造成严重损害,甚至危及太空任务。探测、跟踪和表征 LNT 碎片将有助于全球宝贵太空资产的更安全运行 [9]。
对于每个样本,从步骤 4b.15 中取出 2 µL PCR 扩增文库进行定量分析:接下来必须按照“Onso TM 文库的 qPCR 定量分析”程序使用 Onso Library 定量试剂盒 (PacBio 102-431-800) 通过 qPCR 准确评估文库数量。这将确保在簇生成期间能够实现最佳簇密度。注意:步骤 4b.17 可以与步骤 4b.16 同时进行。
本研究比较了两个非英语环境中社交网站 (SNS) 的使用情况。2011 年至 2018 年期间,通过调查、论坛和焦点,开发了一种纵向混合方法,用于与里昂(法国)和圣彼得堡(俄罗斯)的 Y 世代和 Z 世代参与者进行面对面的数据收集组。互联网用户行为中最初观察到的差异在 2018 年不再明显。明显相似的用户行为反映了 SNS 消费的趋同。从结果中,我们确定了影响 SNS 使用的社会技术变化,以便创建用户行为类型来识别用户群体。
这项研究比较了两种非英语环境中社交网站 (SNS) 的使用情况。2011 年至 2018 年间,通过调查、论坛和焦点小组,开发了一种纵向混合方法,用于与里昂(法国)和圣彼得堡(俄罗斯)的 Y 一代和 Z 一代参与者进行面对面的数据收集。最初观察到的互联网用户行为差异在 2018 年不再明显。明显相似的用户行为反映了 SNS 消费的趋同。从结果中,我们确定了影响 SNS 使用的社会技术变化,以便创建用户行为类型学来识别用户细分。
摘要:原则上,地面高功率激光器能够通过远程诱导激光烧蚀动量使任何类型的空间碎片物体脱离低地球轨道 (LEO)。然而,效率和操作安全性的评估取决于许多因素,例如大气限制或辐射过程中碎片解体的风险。我们分析了各种目标几何形状和尺寸的激光动量,并且首次在大规模模拟中将热约束纳入激光辐照配置中。使用相干耦合的 100 kJ 激光系统,波长为 1030 nm,脉冲持续时间为 5 ns,在优化的指向仰角范围内,脉冲频率应小于 10 Hz,以防止碎片熔化。对于机械完好无损的有效载荷或火箭体,重复率应该更低。尺寸在 10 到 40 厘米之间的小碎片可以通过大约 100 到 400 次正面照射来脱离轨道,而超过 2 米的物体通常需要超过 1000 次照射才能脱离轨道。因此,基于激光的碎片清除不能被视为处理最高风险大型碎片的主要太空可持续性措施,但它可以使用全球分布的激光站点的小型网络来修复大量小型碎片。
摘要:空间碎片去除(ADR)被太空机构定位为稳定空间碎片的指数生长非常重要的轨道任务。大多数已经开发的捕获系统都是为大型合作卫星设计的,这导致了昂贵的一对一解决方案。本文提出了一种多功能杂种机制,以针对低地球轨道(LEO)的各种小型不合作空间碎片,从而实现了一对一的一对一解决方案。该系统被定制为拟合到立方体。它结合了主动的(带有线性执行器和阻抗控制器)和被动(具有反击的关节)依从性,以消除影响能量,确保足够的接触时间,并成功地帮助捕获更广泛的空间碎片。进行了一项模拟研究,以评估和验证将混合依从性整合到ADR系统中的必要性。这项研究发现了碎屑质量,系统的刚度和接触时间之间的关系,并提供了调整阻抗控制器(IC)增益所需的数据。这项研究还证明了混合依从性的重要性,以确保对更广泛的空间碎片的安全可靠捕获。
对空间基础设施及其快速扩张的日益依赖性需要开发和增强空间碎片和破碎研究的工具。准确预测与卫星分裂相关的风险需要全面了解所涉及的动态。为了满足这一需求,本文中采用了广泛使用的NASA标准分手模型(SBM)来预测破裂事件引起的碎片特征。另外,还引入了一种新方法来确定这些片段的方向,这是SBM直接覆盖的。此外,动态气体理论的原理用于计算碎片和预定的卫星种群之间的总体长期碰撞风险。该结果揭示了SBM在准确模拟某些卫星类型的碎片中的局限性。然而,新实施的片段方向性方法与观察到的数据很好地保持一致,这表明其进行了进一步研究的潜力。同样,风险模型与ESA的主人表现出强烈的对应关系,ESA的主体是一种用于评估碎屑碰撞风险的模型,其偏差可能是由于所使用的影响速度模型不同所致。最后,合并了经过验证的碎片和风险模型,并使用合并模型来分析现实世界中的碎片事件。
每架美国飞机都有NASA Glenn技术,使飞行器清洁,更安全,更安静。今天,我们正在对电气化飞机推进,高级材料和替代燃料进行革命性航空研究,以帮助国家实现其气候变化目标。我们还正在探索下一代超音速和高音飞机。通往月球的道路穿过俄亥俄州。Glenn的世界一流测试设施以及无与伦比的权力,推进和通信专业知识对于推进Artemis计划至关重要。Glenn的太阳能推进将有助于将未来的勘探任务推向月球,最终是火星,宇航员将进行科学研究并在表面上建立存在。