地球同步 (GSO) 区域的光学勘测通常需要在天空覆盖范围、勘测深度和成本之间取得平衡。使用商用现货 (COTS) 组件可以合理的成本实现大面积勘测,但这些系统的孔径仅限于 30 厘米左右。孔径超过 1 米的大型望远镜可以探测微弱碎片群以发现分米级的物体,但通常视野较小(约 1 平方度)并且无法大规模商业化使用。因此,尝试使用大型望远镜探测微弱碎片群的勘测通常仅限于对已知碎裂事件的目标观测。否则,视野较小再加上想要覆盖更多天空会导致检测到的物体的位置信息非常稀疏或有限。
由于太空物体数量不断增加,碎片撞击运行中的航天器变得越来越常见。样本返回任务表明发生了数百次小撞击,但通常只有在撞击导致航天器性能异常时才会进行严格分析。开发识别和评估不会立即导致异常行为的小撞击的技术有助于验证碎片群模型、进行风险评估并帮助确定未来异常的归因。本研究将碎片撞击引入航天器动力学模拟并评估其对航天器遥测的影响。各种信号处理和变化检测技术用于识别嘈杂遥测中的撞击并估计撞击参数。开发了匹配滤波器小波来识别对状态遥测的影响,其中误差由航天器姿态控制系统自主校正。一组匹配滤波器用于根据对航天器响应特性的先验知识来估计撞击的参数。使用顺序概率比测试来突出显示航天器角动量的突然变化。进行蒙特卡罗分析以表征这些算法的性能。在正确识别碎片撞击和准确估计撞击参数方面,比较了各种技术的结果。开发对小型碎片撞击进行分类和表征的能力使任何航天器都可以用作现场碎片传感器。