电荷转移解离质谱法 (CTD-MS) 已被证明可在气相中诱导生物离子的高能碎裂,并提供类似于极紫外光解离 (XUVPD) 的碎裂光谱。迄今为止,CTD 通常使用动能介于 4-10 keV 之间的氦阳离子来引发自由基导向的分析物碎裂。然而,作为一种试剂,氦气最近已被列为一种越来越稀缺和昂贵的关键矿物,因此本研究探索了使用更便宜、更易获得的试剂气体的潜力。使用各种 CTD 试剂气体(包括氦气、氢气、氧气、氮气、氩气和实验室空气)对聚合度为 4 的模型肽缓激肽和模型寡糖 k-角叉菜胶进行碎裂。CTD 结果还与低能碰撞诱导解离 (LE-CID) 进行了对比,后者在同一个 3D 离子阱上收集。使用恒定的试剂离子通量和动能,所有五种替代试剂气体都产生了与 He-CTD 相比非常一致的序列覆盖率和碎裂效率,这表明试剂气体的电离能对生物离子的活化影响可以忽略不计。所有气体的 CTD 效率范围为缓激肽的 11-13% 和 k -角叉菜胶的 7-8%。在这些狭窄的范围内,缓激肽的 CTnoD 峰的丰度和缓激肽的 CTD 碎裂效率都与 CTD 试剂气体的电离能相关,这表明共振电荷转移在该肽的活化中起的作用很小。缓激肽和 k-角叉菜胶的大部分激发能来自电子停止机制,该机制由试剂阳离子与生物离子最高占据分子轨道 (HOMO) 中的电子之间的长程相互作用描述。CTD 光谱没有提供任何证据表明生物离子与氢气、氧气和氮气等反应性更强的气体之间存在共价结合产物,这意味着试剂离子的高动能使它们无法进行共价反应。这项工作表明,任何测试的替代试剂气体都是未来 CTD-MS 实验的可行选择。© 2021 Elsevier BV 保留所有权利。
仅使用镀铬钢或无镀层钢工具执行本手册中描述的拆卸或重新组装程序。不允许使用镀镉或镀锌工具,因为这些镀层容易碎裂和剥落。如果这些碎片或薄片嵌入飞机部件中,将导致电化学腐蚀。如果这些碎片或薄片进入燃料润湿或油润湿部件,它们最终可能会堵塞过滤器或在高温下产生镍或钛基合金的晶间腐蚀。无论镀层类型如何,所有工具都应可维修且无碎裂。
概览................................................................................................................................................................4 辐射基础知识...................................................................................................................................................5 辐射防护...................................................................................................................................................7 辐射的生物效应................................................................................................................................................8 急诊科建议......................................................................................................................................................9 治疗计划......................................................................................................................................................12 患者和事件历史......................................................................................................................................13 污染筛查......................................................................................................................................................13 外部净化............................................................................................................................................14 识别污染物............................................................................................................................................15 取样和测试............................................................................................................................................16 外部净化............................................................................................................................................17 内部装饰............................................................................................................................................18 内部剂量评估................................................................................................................................19 临床决策指导 (CDG)..............................................................................................................................20 计算 CDG................................................................................................................................................21 CDG 参考表................................................................................................................................................22 伤口内部剂量评估.......................................................................................................................................24 内部碎裂治疗....................................................................................................................................25 碎裂治疗....................................................................................................................................................26 碎裂疗法....................................................................................................................................2................................................................................... 27 辐射剂量......................................................................................................................................29 暴露途径..............................................................................................................................................30 急性放射综合征......................................................................................................................................31 抗生素治疗......................................................................................................................................35 抗真菌和抗病毒治疗......................................................................................................................36 ARS 治疗.........................................................................................................................................................36 皮肤放射性损伤.........................................................................................................................................37 CRI 治疗.........................................................................................................................................................38 附录.........................................................................................................................................................................39 资源和联系信息.........................................................................................................................................40 参考文献.........................................................................................................................................................42.................................38 附录................................................................................................................................................39 资源和联系信息....................................................................................................................40 参考文献...................................................................................................................................42.................................38 附录................................................................................................................................................39 资源和联系信息....................................................................................................................40 参考文献...................................................................................................................................42
摘要:航天器飞掠可以让我们了解行星物体气体包层的化学成分。在飞掠过程中,相对相遇速度通常为几公里/秒到几十公里/秒。当速度超过 5 公里/秒时,现代质谱仪在分析快速相遇的气体时会受到超高速撞击引起的碎裂过程的影响,导致在分析复杂分子时得到不明确的结果。在这种情况下,仪器使用前室,进入的物质在前室中与室壁发生多次碰撞。这些碰撞导致气体分子减速和热化。然而,这些碰撞也会解离分子键,从而使分子碎裂,并可能形成新的分子,使科学家无法推断出采样气体的实际化学成分。我们开发了一种新型飞行时间质谱仪,它可以处理高达 20 公里/秒的相对相遇速度,而无需前室及其相关的碎裂。它一次性分析 m/z 1 至 1000 的完整质量范围。这项创新可实现对复杂(有机)分子的明确分析。应用于土卫二、木卫二或木卫一,它将为探索太阳系提供可靠的化学成分数据集,以确定其状态、起源和演化。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。