图 3. (a) 黑暗环境下 cKPFM 测量中相位响应的加载图,其中 BE-PFM 测量中观察到铁电畴。(a) 中 (b) 红色、(c) 绿色、(d) 紫色和 (e) 浅蓝色标记的“×”处的单个 cKPFM 曲线。(f) 照明环境下 cKPFM 测量中相位响应的加载图。(g) 黄色、(h) 绿色、(i) 紫色和 (j) 浅蓝色标记的“×”处的单个 cKPFM 曲线。(k) 黑暗环境下和 (l) 照明环境下 cKPFM 数据平均偏差的第 1 个 PCA 分量。
情况说明书 什么是碘化钾 (KI) 以及它有何用途? 碘化钾是一种化合物(盐),可用于在核电站或核装置发生放射性紧急情况时保护甲状腺免受伤害。它为片剂形式。除甲状腺外,KI 不能保护身体任何部位免受辐射;也不能保护身体免受放射性碘以外的任何放射性物质的伤害。 什么是甲状腺?为何碘对甲状腺很重要? 甲状腺是位于人体颈部的一个小腺体。其主要功能是制造、储存和释放甲状腺激素,甲状腺激素可调节身体的新陈代谢(新陈代谢是身体产生能量的方式)。甲状腺需要碘来制造甲状腺激素。人体中的大部分碘来自食物,例如加碘食盐、乳制品、富含碘的土壤中生长的植物(沿海地区)、海鲜和复合维生素。放射性/核事故会如何损害甲状腺?如果核电站出现紧急情况,可能会有大量放射性碘释放到空气中。甲状腺会利用人体血液中的所有碘,但它无法区分放射性和非放射性碘。甲状腺会迅速吸收放射性碘,就像吸收人体饮食中的常规碘一样。放射性碘会释放能量(辐射),高浓度时会损害甲状腺细胞。对于某些人,尤其是幼儿,这种损害会在接触几年后导致甲状腺癌或其他甲状腺疾病。碘化钾如何保护甲状腺?由于甲状腺会迅速吸收体内的任何碘,因此人们可能需要在核事故发生后立即服用碘化钾药片,因为核事故会将放射性碘释放到空气中。碘化钾药片中稳定的非放射性碘会充斥甲状腺,使放射性碘没有空间被吸收。有害的放射性碘随后会通过肾脏无害地从体内排出。
摘要 纠缠量子粒子是纳米尺度上携带量子信息的一种有吸引力的选择,对其中某个粒子的操作会瞬间影响另一个纠缠粒子的状态。然而,在传统的时间相关量子传输模拟方法中,完整描述纠缠需要大量的计算工作,几乎是无法承受的。考虑到电子,分析其纠缠的一种方法是通过 Wigner 形式对库仑相互作用进行建模。在本文中,我们通过采用合理的近似来降低两个相互作用电子时间演化的计算复杂度。具体而言,我们用局部静电场代替电子-电子相互作用的 Wigner 势,该势是通过势的谱分解引入的。证明了对于电子-电子系统的某些特定配置,引入的近似是可行的。我们还分析了纯度,即量子态的最大相干性,相应的分析表明,引入的局部近似可以很好地解释由库仑相互作用引起的纠缠。
以患者为中心的治疗目标之一是推进有效的个性化治疗,同时尽量减少毒性。II 期 I-SPY2.2 试验采用乳腺癌新辅助序贯治疗方法来进一步实现这些目标,在优化个体结果的同时测试有前景的新药物。我们在 I-SPY2.2 试验中针对高风险 2/3 期乳腺癌患者测试了达托泊单抗-德鲁替康 (Dato-DXd)。I-SPY2.2 采用序贯多重分配随机试验设计,包括三个序贯生物靶向新辅助治疗区段:实验药物(区段 A)、针对肿瘤亚型定制的紫杉烷类方案(区段 B)和阿霉素-环磷酰胺(区段 C)。患者被随机分配到由不同的研究性 A 区段治疗组成的组。基于磁共振成像和核心活检的算法指导每次阻滞后的治疗重新定向,包括对预测很可能获得病理完全缓解(主要终点)的患者选择早期手术切除。主要疗效分析有两种:阻滞 A 后和所有阻滞,针对六种预先指定的乳腺癌亚型(由临床激素受体/人表皮生长因子受体 2 (HER2) 状态和/或反应预测亚型定义)。我们报告了 103 名接受 Dato-DXd 治疗的患者的结果。虽然 Dato-DXd 在任何亚型中均未达到阻滞 A 后预先指定的成功(毕业)阈值,但所有阻滞的治疗策略在激素受体阴性 HER2 − 免疫 − DNA 修复缺陷 − 亚型中均毕业,估计病理完全缓解率为 41%。未观察到新的毒性,口腔炎和眼部事件发生在低级别。 Dato-DXd 在激素受体阴性/HER2 − 免疫 − DNA 修复缺陷 − 特征中特别活跃,值得进一步研究,并且对于遵循治疗策略的患者,在其他亚型中也是安全的。ClinicalTrials.gov 注册:NCT01042379。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
在麻醉期间预测双光谱指数(BIS)和平均动脉压(MAP)对于患者的安全性和e e ff eftectia麻醉管理至关重要。传统的药效动力反应表面模型具有限制和适应性。本文提出了一种使用机器学习技术预测BIS和地图的新方法。而不是使用标准的药效响应表面模型,而是提出了基于机器学习的AP-prach来建模药效学。所提出的方法考虑了标准丙泊酚和雷素药代动力学模型的状态,以及患者信息作为预测BIS和MAP值的特征。培训和测试是在含有191例不同患者的VitalDB数据集[1]的选定子集上进行的。证明,基于机器学习的方法就准确性而优于标准的药效学模型。具体而言,支持向量回归(SVR)模型达到的平均绝对预测误差(MDAPE)比BIS预测的Eleveld模型小32%。为了进行地图预测,SVR模型还降低了66%的MDAPE表现。所提出的方法提供了与深度学习方法[2]相似的性能[2],同时保留了可以在其他应用程序中使用的简单结构。
碘缺陷代表了全球一个公共卫生问题。为了增加饮食中碘的量,已经尝试了植物的生物强化策略。他们依靠碘的外源给药来增加其吸收和积累。但是,碘在植物中不稳定,可以通过由无害对臭氧层(HOL)基因编码的特定甲基转移酶的作用挥发为碘化甲基。大气中碘化甲基的释放是由于其臭氧耗竭潜力而对环境的威胁。稻田是碘化甲基最强的生产者之一。因此,碘生物化化的农艺学方法不适合这种作物,从而进一步增加了碘排放。在这项工作中,我们使用了基因组编辑CRISPR/CAS9技术来淘汰稻米基因并研究其功能。oshol1由于淘汰赛废除了该过程,因此导致了碘化甲基甲基生产的主要参与者。此外,它的过表达加强了它。相反,Oshol2的敲除未产生效果。我们的实验有助于阐明水稻基因的功能,提供工具来开发新的水稻品种,并减少碘排放,因此更适合于生物实力化计划而不进一步影响环境。
(c)镁原子通过金属键合在一起,将价电子吸引到相邻原子的核中。碘分子由弱分子间力组合在一起。延展性mg原子对价电子的吸引力不在任何特定方向上;因此,Mg原子可以彼此移动而不会破坏金属键,因此Mg是延性的。碘分子之间的景点是方向性的。如果施加了压力,则类似的离子之间的排斥将破坏固体,因此I 2不是延展性的。溶解在环己烷镁中不会溶于环己烷中,因为环己烷分子不会被金属晶格中的镁原子吸引。碘是可溶的,因为碘是一种非极性分子。碘分子和环己烷分子形成弱
本文档是Aubnen5c E匕c5onic证书TSR CLINF业务目的使用。在一个eiec500ic centireate处被视为副本。 该文档受保护和任何厌氧的改变,伪造的伪造或一个内容的伪造或面外观。被视为副本。该文档受保护和任何厌氧的改变,伪造的伪造或一个内容的伪造或面外观。
摘要:锌 - 碘(Zn -i 2)电池对其高能量密度,低成本和固有安全性引起了极大的关注。然而,包括聚二维溶解和穿梭,碘迟发的氧化还原动力学和低电导率的几个挑战限制了它们的实际应用。在此,我们通过将Ni单原子(NISA)均匀分散在分层多孔碳骨架(NISAS-HPC)上,为Zn-I 2电池设计了高效的电催化剂。原位拉曼分析表明,由于Nisas具有显着的电催化活性,因此使用NISAS-HPC显着加速了可溶性聚二维(I 3 - 和I 5 - )的转化。带有NISAS-HPC/I 2阴极的结果Zn-I 2电池提供了出色的速率能力(在50 C时为121 mAh g-1)和超循环稳定性(在50 c时超过40 000个循环)。即使在11.6 mg cm -2碘以下,Zn -i 2电池仍然表现出令人印象深刻的循环稳定性,其容量保留为93.4%和141 mAh g -1,在10 c.关键字上10 000循环后,关键字:锌 - 碘化物 - 碘磁带,多二维,诸如乘坐,电气效应,电型,电动