缓解指南,可以预见到,未来25年可能会发生空间碎片人口的一倍。 此外,从长远来看,灾难性碰撞事件的增加可能导致空间垃圾对象的乘法增加10倍。 很明显,对IADC指南的广泛采用至关重要,特别是对于低地球轨道(LEO),现在空间流量是2000年观察到的水平的10倍。。 对于这个受保护区域,主要缓解措施是终止生命终止的大气再进入(EOL)。 在过去几年中自然符合25年规则的航天器的份额显着增加,但非自然兼容的飞行员的成功EOL操纵百分比仍然很低。 如果仅考虑后者,直到2017年,只有10%到40%的航天器尊重缓解规则。 在过去的几年中,该价值增加到约50%左右,但主要是由于一个星座的解剖以及被驳回不合规轨道的卫星数量少。 如果将这些百分比与所需的最低合规性阈值进行比较(90%[4] [5]),则很明显,遗传后处置(PMD)仍然是一个有问题的话题。 但是,PMD的可靠性不是必须考虑的唯一要求。 重新输入的航天器本质上意味着对人和货物的风险,其可接受性阈值通常在10 000中的1中定义。 观察这种必要性的一种策略是对针对无人居住的地区进行高推断控制的重新进入。缓解指南,可以预见到,未来25年可能会发生空间碎片人口的一倍。此外,从长远来看,灾难性碰撞事件的增加可能导致空间垃圾对象的乘法增加10倍。很明显,对IADC指南的广泛采用至关重要,特别是对于低地球轨道(LEO),现在空间流量是2000年观察到的水平的10倍。对于这个受保护区域,主要缓解措施是终止生命终止的大气再进入(EOL)。在过去几年中自然符合25年规则的航天器的份额显着增加,但非自然兼容的飞行员的成功EOL操纵百分比仍然很低。如果仅考虑后者,直到2017年,只有10%到40%的航天器尊重缓解规则。在过去的几年中,该价值增加到约50%左右,但主要是由于一个星座的解剖以及被驳回不合规轨道的卫星数量少。如果将这些百分比与所需的最低合规性阈值进行比较(90%[4] [5]),则很明显,遗传后处置(PMD)仍然是一个有问题的话题。但是,PMD的可靠性不是必须考虑的唯一要求。重新输入的航天器本质上意味着对人和货物的风险,其可接受性阈值通常在10 000中的1中定义。观察这种必要性的一种策略是对针对无人居住的地区进行高推断控制的重新进入。不幸的是,该解决方案暗示了对任务预算和设计复杂性的重大影响。第二种可能性是限制在重新进入过程结束时到达地面的碎片。这是设计范围(D4D)方法背后的基本原理。d4d是航天器的有意设计,旨在促进其在大气重新进入期间的破坏,以遵守伤亡风险极限,因此可以扩大可以允许不受控制的再进入的航天器的份额。这将允许耗尽明显的燃料并简化具有经济和可靠性优势的航天器设计。几项研究提出并评估了不同的D4D技术[6] [7] [8]。替代了最坚固的材料,例如钛或钢,结构关节弱化以利用早期碎片的优势,使用多孔材料或特定形状来控制热负荷分布,以及网络的利用或nets或Tethers来减少碎片数量。相对较新的策略是将能量材料掺入航天器空隙中,以最大程度地提高可用的热量[9] [10] [11]。热液对此角色特别有趣[12]。最后一项技术是本文的重点。此方法在此定义为热心(T4D)。在以下各节中,将详细介绍实验运动的预备研究。在HypershallTechnologieGöttingenGmbH(HTG)领导的ESA-TRP Spadexo项目框架中,涉及Politecnico di Milano,DLR-Cologne,Exvisive Powderive Technologies,AirBus Defacties and Airbus Defense and Space,目前正在研究T4D。热电荷已在DLR L2K弧形风洞中进行了测试,以验证该技术的适用性和有效性。特定的努力致力于预测热点点火及其对样品温度的影响,并确保测试设施的安全性。在第2节中,提出了D4D验证和热矿的背景。在第3节中,报告了样品的几何形状和测试活动中使用的公式。第4节描述了实验设置和用于评估能量电荷效应的可测量性的数值模型。在第5节中,选择了三个测试用例以验证计算工具。最后,第6节介绍了项目的结论和下一步。