现代工业中机器人使用率的提高带来了可通过机器人执行的新型制造任务。尽管在许多情况下,由于人类的灵活性,这些任务需要人类的参与。工业工作场所应由人类和机器人同时共享,以达到最佳生产率水平。通过 HRC 概念,生产的灵活性和多功能性得到提高 [1][2][3]。人机合作概念适用于许多工业应用,如装配任务、包装、焊接任务和物体操作 [4][5]。在现代合作任务中,机器人和人类在共享工作空间中并肩工作,无需使用钢栅栏或笼子等辅助安全装置。通过这种方式,操作员可以提供人类的灵活性和感知能力,而机器人则提供其
最近,人口和工业的前所未有的扩张导致道路上的车辆数量大幅增加[1]。城镇交通的这种流量激增可以归因于普通消费者汽车的负担能力,这使得个人车辆每天通勤必不可少[1]。此外,公共交通的频率和可靠性有限,进一步鼓励个人更喜欢私人车辆[1]。不幸的是,这种车辆活动的激增导致印度道路安全带来令人震惊的后果。在2022年,由于道路事故,该国的死亡人数增加了9.4%,丧生16.8万。原因从鲁ck驾驶和超速驾驶到醉酒的驾驶和不遵守交通法规的原因不等。同时,事故总数升级为11.9%,达到461万事件。为了解决这些关键问题,本文介绍了一个固定的设计模型,该模型集成了物理硬件组件和软件程序。这些组件有助于收集和分析信息,允许
摘要 - 集合检测是各个领域的基本问题,例如机器人技术,计算物理和计算机图形。一般而言,碰撞检测被作为计算几何问题,而所谓的吉尔伯特,约翰逊和Keerthi(GJK)算法是当今最采用的解决方案。在1988年推出时,GJK仍然是计算两个3D凸几何形状之间距离或碰撞的最有效解决方案。多年来,它被证明是高效,可扩展的和通用的,在宽类凸形的形状上运行,范围从简单的原始词(球体,椭圆形,盒子,盒子,锥,锥,胶囊等)到涉及数千个顶点的复杂网格。在本文中,我们通过利用这两个问题是从根本上优化概率的事实来介绍了凸几何之间加速碰撞检测和距离计算的几项贡献。值得注意的是,我们确定GJK算法是凸优化中良好的Frank-Wolfe(FW)算法的特定子案例。通过调整将Polyak和Nesterov加速与Frank-Wolfe方法联系起来的最新作品,我们还提出了经典GJK算法的两个加速扩展。通过涉及日常生活对象的数百万碰撞对的广泛基准,我们表明,这两个加速的GJK扩展大大减轻了碰撞检测的总体计算负担,导致计算时间高达两倍。最后,我们希望这项工作将大大降低现代机器人模拟器的计算成本,从而允许在很大程度上依赖模拟(例如增强学习或轨迹优化)的现代机器人应用加速。
摘要 - 该项目解决了高速公路上驾驶员隐身性的关键问题,这通常会导致碰撞,尤其是当较小的车辆接近大型车辆(例如公交车或卡车)时。高速公路上的驾驶员隐身通常会导致事故,尤其是当较小的车辆接近较大车辆(如公共汽车或卡车)时。该项目使用图像处理和基于LIFI技术的实时车辆检测和通信系统。在重车上,有一个相机和一个Li-Fi发射器,而接近的车辆具有Li-Fi接收器。如果较小的车辆太近,则系统会发出仪表板警告的警告。该系统致力于减少与盲点和较晚反应有关的事故。具有基于Python的图像处理,在每种类型的天气和照明条件下都会发生准确的检测。NodeMCU微控制器控制图像处理单元和LI-FI发射器的数据流。实时数据通过LI-FI传输到传入的车辆,允许驾驶员更快地响应。该系统的延迟非常小于100毫秒,因此减少了后端碰撞,尤其是在可见度较差的情况下。这种具有成本效益和可扩展的解决方案适用于商用和乘用车,并突出了Li-Fi技术在改善汽车安全性方面的潜力,尤其是在基础设施有限的地区。
摘要 - 动态环境中的动作计划是自动机器人技术的重要任务。新兴方法采用可以通过观察(例如人类)专家来学习的神经网络。此类运动计划者通过不断提出候选路径以实现目标来对环境做出反应。这些候选路径中的一些可能是不安全的,即导致碰撞。因此,必须使用碰撞检测检查提议的路径以确保安全。我们观察到,如果我们可以预期哪些查询将返回不安全的结果,则可以消除25% - 41%的碰撞检测查询。我们利用这一观察结果提出了一种机制坐标,以预测沿拟议路径的给定机器人位置(姿势)是否会导致碰撞。通过优先考虑对预测碰撞的详细评估,坐标可以快速消除神经网络和其他基于采样的运动计划者提出的无效路径。坐标通过利用不同机器人姿势的物理空间位置并使用简单的哈希和饱和计数器来实现这一目标。我们证明了在包括CPU,GPU和ASIC在内的不同计算平台上碰撞预测的潜力。我们进一步提出了一个硬件碰撞预测单元(COPU),并将其与现有的碰撞检测加速器集成在一起。这平均17。2% - 32。跨不同运动计划算法和机器人的碰撞检测查询数量减少了1%。当应用于最先进的神经运动计划者[41]时,坐标会提高性能/瓦特1。平均而言,针对不同难度水平的运动计划查询。此外,我们发现碰撞预测的好处随着运动计划查询的计算复杂性增加并提供1。30×在狭窄的段落和混乱的环境中进行性能/瓦特的迹象。索引术语 - 机器人,硬件加速度,运动计划,碰撞检测,碰撞预测
HINAS控制是一个自主导航系统,具有自主导航,操纵,碰撞检测和避免碰撞的功能。这是一个尚未完全笨拙的部分自治系统,因此自主操作的所有责任都属于船上的认证机组人员。
摘要 — 本文使用来自自动识别系统 (AIS) 的实时数据和扩展卡尔曼滤波器 (EKF) 设计来解决船舶运动估计问题。AIS 数据由全球船舶传输,甚高频 (VHF) AIS 接收器以美国国家海洋电子协会 (NMEA) 指定的格式接收编码的 ASCII 字符信号。因此,必须使用解析器解码 AIS 语句以获取实时船舶位置、航向和速度测量值。状态估计用于碰撞检测和实时可视化,这是现代决策支持系统的重要功能。使用来自挪威特隆赫姆港的实时 AIS 数据验证了 EKF,并证明了估计器可以实时跟踪船舶。还证明了 EKF 可以预测船舶的未来运动,并在防撞场景中分析了不同的规避动作。索引词——卡尔曼滤波器、状态估计、运动预测、碰撞检测、无人水面舰艇、船舶
空域系统 (NAS) 中,新程序和技术对于确保空域安全运行和尽量减少 UAS 对当前空域用户的影响是必不可少的。目前,小型 UAS 在民用空域的使用受到限制,因为它们不具备检测和避开其他飞机的能力。在本文中,我们将介绍一个框架,该框架由基于广播式自动相关监视 (ADS-B) 的传感器、航迹估计器、冲突/碰撞检测和解决方案组成,可减轻碰撞风险。ADS-B 提供长距离、全方位入侵者检测,对尺寸、重量、功率和成本要求相对较低。所提出的冲突/碰撞检测和冲突/碰撞解决规划算法是在局部级别框架中设计的,该框架是展开的、未倾斜的机身框架,其中本机静止在地图中心。路径规划方法旨在随着与本机距离的增加而实现多分辨率,以考虑自分离和避免碰撞的阈值。我们使用模拟 ADS-B 测量来演示和验证这种方法。
随着将无人机系统 (UAS) 整合到国家空域系统 (NAS) 的需求不断增长,需要新的程序和技术来确保空域安全运行并最大限度地减少 UAS 对当前空域用户的影响。目前,小型 UAS 在民用空域的使用受到限制,因为它们没有检测和避开其他飞机的能力。在本文中,我们将介绍一个框架,该框架由基于广播式自动相关监视 (ADS-B) 的传感器、航迹估计器、冲突/碰撞检测和降低碰撞风险的解决方案组成。ADS-B 提供长距离、全方位入侵者检测,对尺寸、重量、功率和成本要求相对较低。所提出的冲突/碰撞检测和冲突/碰撞解决规划算法是在局部级别框架中设计的,该框架是展开的、未倾斜的机身框架,其中本机静止在地图中心。路径规划方法设计为随着与本机距离的增加而具有多分辨率,以考虑自分离和避免碰撞的阈值。我们使用模拟 ADS-B 测量来演示和验证此方法。
摘要 — 本文使用来自自动识别系统 (AIS) 的实时数据和扩展卡尔曼滤波器 (EKF) 设计来解决船舶运动估计问题。AIS 数据从全球船舶传输,甚高频 (VHF) AIS 接收器以美国国家海洋电子协会 (NMEA) 指定的格式接收信号作为编码的 ASCII 字符。因此,必须使用解析器解码 AIS 语句以获得实时船舶位置、航向和速度测量值。状态估计用于碰撞检测和实时可视化,这是现代决策支持系统的重要特征。使用来自挪威特隆赫姆港的实时 AIS 数据验证了 EKF,并证明估计器可以实时跟踪船舶。还证明了 EKF 可以预测船舶的未来运动,并在防撞场景中分析了不同的规避动作。索引术语 — 卡尔曼滤波器、状态估计、运动预测、碰撞检测、无人水面航行器、船舶