摘要:水泥和建筑行业产生了全球约 10% 的碳足迹。土聚物和碱激活混凝土为传统混凝土提供了可持续的解决方案。由于其缺点,土聚物和碱激活混凝土的实际应用受到限制。可加工性是开发土聚物和碱激活混凝土面临的问题之一。进行了大量研究以提供解决方案,以提高使用不同高效减水剂 (SP) 的能力。本文广泛回顾了 SP 对土聚物和碱激活混凝土的影响。研究文章在过去 5 年内在高质量期刊上发表,以了解不同 SP 的化学成分并分析它们对土聚物和碱激活水泥砂浆和混凝土的确切影响。随后,确定了 SP 对水泥砂浆的正常稠度和凝结时间、可加工性、抗压强度、弯曲强度、劈裂拉伸强度、微观结构和土聚物和碱激发混凝土的吸水率的影响。SP 在以所需剂量使用时可改善土聚物和碱激发混凝土;剂量过大会产生负面影响。因此,选择最佳的减水剂至关重要,因为它会影响土聚物和碱激发混凝土的性能。
齐:[1] Xia…Saffman,PRL(2015); [2] Madjarov…Endres,Nat.物理(2020); [3] Levine…Lukin,PRL(2019); [4] Graham…Saffman,PRL(2019)少数/多数观点:Kaufman…Regal,Science(2014); Bayha…Jochim,《自然》(2020年); Bernien…Lukin,《自然》(2017 年),Léséleuc…Browaeys,《科学》(2019 年)
在所有量子系统中,囚禁离子量子比特已证明具有最高保真度的量子操作 1–4 。因此,如果能够应对集成和扩展相关技术的挑战,它们将成为可扩展量子信息平台的有希望的候选者。这些挑战中最主要的是这种激光器的集成,这不仅是冷却离子所必需的,而且通常也是操纵量子比特所必需的。目前,正在研究两种主要方法来解决这个问题。首先,如果硅光子学中展示的能力可以扩展到与原子离子量子比特所需的可见光和紫外波长兼容的材料,那么集成光子学可以提供一种可扩展的方式来传输必要的激光器 5,6 。其次,人们正在探索几种无激光操控原子离子量子比特的方案,这些方案涉及微波场与强静态磁场梯度 8-10、微波磁场梯度 11-13、微波修饰态 14 或运动模式频率附近振荡的磁场梯度 15,16 的配对。集成光学和微波控制都需要离子阱制造技术的进步才能真正实现可扩展性。