摘要:水泥和建筑行业产生了全球约 10% 的碳足迹。土聚物和碱激活混凝土为传统混凝土提供了可持续的解决方案。由于其缺点,土聚物和碱激活混凝土的实际应用受到限制。可加工性是开发土聚物和碱激活混凝土面临的问题之一。进行了大量研究以提供解决方案,以提高使用不同高效减水剂 (SP) 的能力。本文广泛回顾了 SP 对土聚物和碱激活混凝土的影响。研究文章在过去 5 年内在高质量期刊上发表,以了解不同 SP 的化学成分并分析它们对土聚物和碱激活水泥砂浆和混凝土的确切影响。随后,确定了 SP 对水泥砂浆的正常稠度和凝结时间、可加工性、抗压强度、弯曲强度、劈裂拉伸强度、微观结构和土聚物和碱激发混凝土的吸水率的影响。SP 在以所需剂量使用时可改善土聚物和碱激发混凝土;剂量过大会产生负面影响。因此,选择最佳的减水剂至关重要,因为它会影响土聚物和碱激发混凝土的性能。
在所有量子系统中,囚禁离子量子比特已证明具有最高保真度的量子操作 1–4 。因此,如果能够应对集成和扩展相关技术的挑战,它们将成为可扩展量子信息平台的有希望的候选者。这些挑战中最主要的是这种激光器的集成,这不仅是冷却离子所必需的,而且通常也是操纵量子比特所必需的。目前,正在研究两种主要方法来解决这个问题。首先,如果硅光子学中展示的能力可以扩展到与原子离子量子比特所需的可见光和紫外波长兼容的材料,那么集成光子学可以提供一种可扩展的方式来传输必要的激光器 5,6 。其次,人们正在探索几种无激光操控原子离子量子比特的方案,这些方案涉及微波场与强静态磁场梯度 8-10、微波磁场梯度 11-13、微波修饰态 14 或运动模式频率附近振荡的磁场梯度 15,16 的配对。集成光学和微波控制都需要离子阱制造技术的进步才能真正实现可扩展性。
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53
我们研究了使用量子最优控制在 87 Sr、ad = 10 维(四进制)希尔伯特空间中实现 I = 9 / 2 核自旋状态的幺正映射的能力。通过核自旋共振和张量交流斯塔克位移的组合,仅通过调制射频磁场的相位,该系统即可实现量子可控。碱土金属原子(例如 87 Sr)由于复合线较窄且激发态的超精细分裂较大,因此具有非常有利的品质因数。我们用数字方式研究了量子速度极限、最优参数以及任意状态制备和完整 SU(10) 映射的保真度,包括由于光移激光引起的光泵浦而产生的退相干。我们还研究了使用稳健控制来减轻由于光移不均匀性而导致的一些失相。我们发现,当 rf Rabi 频率为 rf 且光移不均匀性为 0.5% 时,我们可以在时间 T = 4.5 π/ rf 内制备任意 Haar 随机状态,平均保真度 ⟨ F ψ ⟩= 0.9992,并在时间 T = 24 π/ rf 内制备任意 Haar 随机 SU(10) 映射,平均保真度 ⟨ FU ⟩= 0.9923。
摘要:太阳能是一种无限的可再生能源,其开发对于支持用可再生能源替代化石燃料至关重要。太阳能可通过聚光太阳能发电 (CSP) 与热化学能储存 (TCES) 相结合的方式利用,通过可逆固气反应转换和储存聚光太阳能,从而实现全天候运行和连续生产。目前,人们正在研究高效、经济且具有长期耐久性和性能稳定性的高温 TCES 系统。事实上,人们追求的是材料在多次充放电循环中容量损失减少或没有损失的循环稳定性。目前研究的主要热化学系统包括金属氧化物氧化还原对 (MO x / MO x − 1 )、非化学计量钙钛矿 (ABO 3 / ABO 3 − δ )、碱土金属碳酸盐和氢氧化物 (MCO 3 / MO、M(OH) 2 / MO,其中 M = Ca、Sr、Ba)。金属氧化物/钙钛矿可以在开环中以空气作为传热流体运行,而碳酸盐和氢氧化物通常需要闭环操作并储存流体(H 2 O 或 CO 2 )。天然成分的替代来源也引起了人们的兴趣,例如丰富且低成本的矿石矿物或回收废物。例如,正在研究石灰石和白云石以提供最有前途的系统之一,CaCO 3 / CaO。基于氢氧化物的系统也在取得进展,尽管最近的大多数研究都集中在 Ca(OH) 2 / CaO 上。混合金属氧化物和钙钛矿也是广泛开发和有吸引力的材料,这要归功于它们的工作温度和储能容量的可能调整。材料的形状及其稳定性对于使材料适应其在反应器(例如填料床和流化床反应器)中的集成以及确保商业使用和开发的顺利过渡至关重要。回顾了自 2016 年以来 TCES 系统的最新进展,并特别强调了它们在太阳能过程中的集成以实现连续运行。