摘要:随着半导体行业在过去几十年的迅猛发展,其对环境的影响也日益令人担忧,包括淡水的抽取和有害废水的产生。四甲基氢氧化铵 (TMAH) 是半导体废水中不可避免的有毒化合物之一,应在废水排放前去除。然而,很少有经济实惠的技术可以去除半导体废水中的 TMAH。因此,本研究的目的是比较不同的处理方案,如膜电容去离子 (MCDI)、反渗透 (RO) 和纳滤 (NF),用于处理含有 TMAH 的半导体废水。进行了一系列台式实验装置,以研究 TMAH、TDS 和 TOC 的去除效率。结果证实,MCDI 工艺和 RO 一样表现出很强的去除能力,而 NF 在相同的恢复条件下无法充分去除。 MCDI 对包括 TMA+ 在内的一价离子的去除率高于二价离子。此外,在碱性溶液中,MCDI 对 TMA+ 的去除率高于在中性和酸性条件下的去除率。这些结果首次证明了 MCDI 在处理含有 TMAH 的半导体废水方面具有巨大潜力。
阴离子交换膜水电氧化器(AEMWE)具有结合液体碱性和PEM技术的优势,提供更高的纯氢产生,提高效率和动态行为。然而,AEM系统面临着显着的挑战,尤其是在增强膜的离子电导率和稳定性方面。AEM的碱性化学稳定性尤其是最大的问题之一,它提供了用作电解质的高碱性溶液。为了克服这些问题,在这项工作中,选择的策略是在膜的聚合物基质中简单地添加无机填充剂。使用改良的鹰嘴豆法合成的各种数量的石墨烯(GO)被掺入基于富膜的膜中。所产生的AEM显示出改善的水吸收,化学稳定性,热稳定性,并且具有适量的填充剂,也提高了电导率。特别是,所有复合膜的体重减轻均减少,即C.在80°C的6 M KOH中170小时后损失。富含3%GO(wt%)的Fumion-GO AEM在2 V和60℃下,在2 V和60°C时显示了电导率的提高,并且在计时仪测试中高于1 A/cm 2的显着电流密度。
已经证明,锂,钠,钠和钾离子在水溶液中,可以使S电极的动力学和完整电池的性能受益。10,17个流量电池(FBS)将满足上述要求。18 FBS最具吸引力的特征是设计灵活性,使功率和能量的设计灵活性克服了水溶液电池(AZSBS)的低排放高原问题。Zn-S夫妇已经在实心悬架流量电池中进行了测试,并且仅显示潜在电流响应,没有骑自行车的性能。19 Zn,S和Zn的固体到固相变的缓慢固体转移反应阻碍了骑自行车的性能。使用阳离子交换膜可以使Zn – S系统可充电,避免同时避免使用Zn-S系统,像多硫化物 - 碘,20多硫化物 - 二酰胺,21多硫化物 - 锰酸22和S-Manganese 23 FBS一样。 尽管已广泛开发了Zn-S电池,基于Zn的FBS,但尚未探索Zn – S流动系统。 24在本文中,我们首次演示了碱性Zn -s Flow Battery(AZSFB)。 溶解在碱性溶液中的活性材料,在5 mA cm 2时使排放高度为0.5 V。 同时,通过两步过程制备了无粘合镍的电极,以改善S氧化还原反应的动力学。 所制备的电极由微纳米化缺陷和镍氧化物颗粒组成,在半细胞测试和FBS中,S氧化还原反应的极化大大降低了。像多硫化物 - 碘,20多硫化物 - 二酰胺,21多硫化物 - 锰酸22和S-Manganese 23 FBS一样。尽管已广泛开发了Zn-S电池,基于Zn的FBS,但尚未探索Zn – S流动系统。24在本文中,我们首次演示了碱性Zn -s Flow Battery(AZSFB)。溶解在碱性溶液中的活性材料,在5 mA cm 2时使排放高度为0.5 V。同时,通过两步过程制备了无粘合镍的电极,以改善S氧化还原反应的动力学。所制备的电极由微纳米化缺陷和镍氧化物颗粒组成,在半细胞测试和FBS中,S氧化还原反应的极化大大降低了。因此,使用该正电极的AZSFB的电压效率(VE)达到了10 mA CM 2时的78%,几乎是使用epristineGrapheenefelt(GF)Electerode.withlowCostandHigh理论能力的两倍,该AZSFB具有巨大的进一步研究潜力。在构造新系统FB之前,进行了环状伏安法(CV),以测试Active
本研究项目旨在开发一种安全有效的大量 HCDS 液体处理方法。所提出的方法是一个两阶段过程,包括在水中直接水解 HCDS 液体,然后用氢氧化钾 (KOH) 水溶液对水悬浮液中的水解产物进行碱性裂解。在第一阶段,HCDS 液体直接在水中水解。所需的 HCDS 与水的重量比为 1:25。在水解过程中,反应温和,不会产生明显烟雾。在水中水解的液体 HCDS 水解沉积物的红外光谱中仅在 915 cm -1 处观察到一个新峰,这可能归因于簇中存在小的氧化硅分子。经确定,与在潮湿空气中形成的其他水解沉积物不同,在水中形成的液体 HCDS 水解沉积物在环境条件下易与碱性溶液反应,同时释放氢气。在第二阶段,加入 KOH 水溶液 (20 wt%) 以中和悬浮液。KOH 与 HCDS 所需的重量比为 2:1,最终 pH 值约为 12.6。残留沉积物在两小时内完全溶解。关键词:六氯乙硅烷、HCDS、水解沉积物、冲击敏感、处置。
每种电池技术都具有内在的优势和缺点:例如镍 - 金属氢化物电池提供相对较高的特定能量和功率以及安全性,使它们成为混合动力汽车的首选功能,而水性有机流动电池(AORFB)则具有可持续性和简单的活性材料的简单更换,以及独立的能源和电源,使其对固定的能量存储非常有吸引力。[1]在本演讲中,一种新的电池技术通过使用氧化还原介导的反应融合了上述电池技术,从本质上描述了每种独立技术的主要特征;例如实心材料的高能量密度,易于可回收性和能量和功率的独立可伸缩性(图1A)。[2]为此,Ni(OH)2和MHS限制在AORFB的正和负储层中,该储层采用了苯烷钾的碱性溶液,并混合了2,6-二羟基羟基酮酮和7,8-二羟基苯二醇和7,8-二羟基苯二醇和阳离子的混合物。基于储层的能力达到128 WHL -1的能量密度,留出了足够的改进空间,直至378 WHL的理论极限 -
摘要 由于其更好的强度重量比、可模塑性、抗断裂性以及能够使用当地材料,钢丝网水泥正成为一种越来越受欢迎的建筑材料。土聚物技术提供了一种环保的替代品,该技术使用碱性溶液来激活富含二氧化硅和氧化铝的材料。本研究重点研究土聚物基钢丝网水泥板,探索其弯曲性能并用土聚物砂浆替代水泥以提高性能。本研究调查了不同百分比的粉煤灰(范围从 0% 到 20%)、GGBS(范围从 80% 到 100%)和 2% 的纳米二氧化硅对钢丝网水泥土聚物混凝土性能的影响。使用碳纤维增强聚合物 (CFRP) 缠绕金属丝网测试弯曲行为。粉煤灰是煤电厂的副产品,与 GGBS 结合以提高强度和凝固性。采用 1:2 砂浆比,包含硅酸钠、氢氧化钠、GGBS 和粉煤灰。添加 80% GGBS 可获得最佳效果,尽管粉煤灰中 100% GGBS 的强度更高。纳米二氧化硅进一步提高了性能,1.5% 纳米二氧化硅和 80% GGBS 的强度显著提高 240%。研究最后确定了适合实际应用的优越组合,考虑到样品的渗透性、耐酸性和耐热性。
地球聚合物是从天然矿物质(粘土),废物或工业副产品的碱性激活获得的低碳粘合剂,以生成具有陶瓷特征的产品[1,2]。铝硅酸盐类型的反应性化合物迅速溶解在碱性溶液中,并形成Si型(OH)4-和Al(OH)4- [3,4]的羟基化低聚物。在多质量反应期间,四面体单元交替结合,形成构成地球聚合物的无定形格子。近年来,随着具有较低能量消耗和强大特性的粘合剂,地质聚合物已引起了很多关注,包括良好的机械性能,低液体渗透性,对高温的抵抗力和其他酸的攻击[5] [5],并大大降低了CO 2排放,更环保友好友好的材料[6 E 9]。高岭土和其他天然粘土,在通过热处理转化为梅托蛋白和钙化粘土后,低钙灰灰是合成地球聚合物的最常见前体[10]。近年来,重点一直放在高可用的原材料上,例如钙化粘土[11,12]。粘土通常由粘土矿物和其他相关的混合物组成[13]。与高岭土不同,粘土的主要缺点用作获得地球聚合物的先驱是组成的变异性和控制热激活过程的参数的控制。常用的粘土被用作地球聚合物前光照器,必须将其钙化以完全脱氢氧化,以避免形成新的稳定相,例如尖晶石[13 E 15]。因此,Buchwald等。在500至800 C之间的粘土矿物质的热激活通常会导致粘土矿物的脱羟基化[16]。其他作者研究了粘土的碱性激活。[17]研究了在550至950 c之间热激活的伊利石/蒙脱石粘土的适用性,形成地球聚合物。Essaidi等。[18]研究了在不同温度下激活的高岭土粘土和富含赤铁矿的伊利石 - 氯化粘土的碱性激活。得出的结论是,由于粘土矿物质的非晶化,Illite-Kaolinitc粘土的反应性优于高岭土粘土的反应性,获得了具有更好的机械性能的材料。Selmani等。[9]评估了两个商业元评估和三个突尼斯粘土,具有不同的化学成分,纯度和反应性,以确定它们用于地球聚合物合成的潜力。用粘土取代梅托氏蛋白,有利于多面反应。所使用的碱性激活剂是强碱性溶液,碱氢氧化物或水合碱硅酸盐。然而,由于需要高于1300℃的温度,因此通过非常昂贵且高度污染的生态过程进行了用作活化剂的碱性硅酸盐的产生,将大量CO 2排入大气中。因此,需要寻找新的替代激活解决方案,而环境和经济影响较小。改善碱性或碱性水泥的经济和生态平衡的一种方法是为传统碱性激活剂找到碱性(总或部分)。近年来,使用生物质来产生热量和电力,以便施加废物并减少CO 2排放
第 1 章 安全 A. 一般规定 实验室的安全是所有在场人员的责任和关注点。不安全的做法和事故会危及学员和教员的安全。最好的安全预防措施是保持头脑清醒和关注正在完成的工作。始终遵循以下一般安全做法: 1. 始终严格遵循本手册中概述的程序,除非教员另有指示。偏离规定的程序,即使看起来微不足道,也可能导致严重事故。例如,氰化钾在酸性溶液中会释放有毒气体氰化氢,但在碱性溶液中使用是安全的。 2. 如果发生事故,请立即通知您的教员或让其他人通知他或她。 3. 根据化学卫生计划,您在离开实验室前必须洗手。您将在实验室中处理各种化学试剂,其中许多可能通过接触皮肤或意外摄入对您造成伤害。处理试剂时请经常洗手;只要您怀疑自己可能接触了化学品,请随时洗手。 4. 保护您的眼睛和皮肤。在实验室时,您必须全程佩戴护目镜,以防止眼睛受伤(图 1-1)。适当穿戴实验室围裙/外套可保护皮肤。此外,必须始终穿长裤。对于暂时身体有限制而需要穿短裤(例如笨重的裤子)的学员,我们可提供外裤
新闻稿 新加坡,2022 年 4 月 5 日 新加坡南洋理工大学科学家开发出一种可回收的花粉纸,可重复打印和“取消打印” 新加坡南洋理工大学 (NTU Singapore) 的科学家开发出了一种以花粉为基础的“纸”,在打印后可以“擦除”并重复使用多次,而不会损坏纸张。 在 4 月 5 日《先进材料》杂志在线发表的一篇研究论文中,新加坡南洋理工大学的科学家演示了如何使用激光打印机在非过敏性花粉纸上打印高分辨率彩色图像,然后使用碱性溶液“取消打印”——即在不损坏纸张的情况下完全去除碳粉(见下方编者注中的图片 1)。 他们证明这个过程可以重复至少八次。 这种创新的、可立即打印的花粉纸可以成为传统纸张的环保替代品,传统纸张经过多步骤工艺制成,对环境有显著的负面影响,由 Subra Suresh 和 Cho Nam-Joon 教授领导的 NTU 团队表示。它还可以帮助减少与传统纸张回收相关的碳排放和能源使用,这涉及再制浆、脱色(去除打印机墨粉)和重建。 这个全 NTU 研究团队的其他成员包括研究员 Ze Zhao 博士、研究生 Jingyu Deng 和 Hyunhyuk Tae 以及前研究生 Mohammed Shahrudin Ibrahim。 NTU 校长兼该论文的资深作者 Subra Suresh 教授说:“通过这项研究,我们展示了我们可以在由天然植物材料制成的纸张上打印高分辨率彩色图像,这种材料通过我们最近开发的一种工艺变得不致敏。 我们进一步证明了在不破坏纸张的情况下反复这样做的可行性,使这种材料成为传统木质纸张的可行环保替代品。 这是一种纸张回收的新方法——不仅以更可持续的方式造纸,而且还通过
摘要:这项研究旨在隔离和鉴定土壤样品中的真菌,重点是产生黑色素的能力。使用乳酚棉蓝色染色和微观检查分离并鉴定了11种不同的真菌属,并参考了H.L.Barnett和Barry B.猎人。其中,只发现曲霉会产生黑色素。最佳黑色素生产条件被确定为生长培养基中的1.5%酪氨酸补充剂,在摇动条件下(120 rpm)和深色孵育三周,导致产量为21.08 mg/100 mL。的生理化学表征表明,提取的黑色素在有机溶剂中不溶,但可溶于碱性溶液(NaOH,KOH),并且部分可溶于DMSO。使用紫外可见光谱的光谱分析显示出特征吸收峰。 FTIR指示官能团和扫描电子显微镜(SEM)图像显示了颗粒状和异质的表面拓扑。 该研究还评估了不同碳和氮源的影响,以及痕量元素对黑色素产生的影响。 麦芽糖和蔗糖是最有效的碳源,而肽是最有效的氮来源。 在痕量元素中,钙显着增强了黑色素的产量,而铜和锌的作用中等。 这些发现为优化真菌黑色素生产及其潜在工业应用提供了宝贵的见解。 未来的研究应关注遗传和代谢途径,以进一步增强黑色素生物合成并探索其多样化的应用。使用紫外可见光谱的光谱分析显示出特征吸收峰。FTIR指示官能团和扫描电子显微镜(SEM)图像显示了颗粒状和异质的表面拓扑。该研究还评估了不同碳和氮源的影响,以及痕量元素对黑色素产生的影响。麦芽糖和蔗糖是最有效的碳源,而肽是最有效的氮来源。在痕量元素中,钙显着增强了黑色素的产量,而铜和锌的作用中等。这些发现为优化真菌黑色素生产及其潜在工业应用提供了宝贵的见解。未来的研究应关注遗传和代谢途径,以进一步增强黑色素生物合成并探索其多样化的应用。这项研究强调了曲霉菌的黑色素可持续和可扩展性产生,这有助于对真菌代谢产物及其商业剥削的广泛理解。关键字:黑色素,曲霉,土壤真菌,FTIR,优化。简介:黑色素是一种天然存在的色素,在生物学和工业环境中都具有巨大的意义。从生物学上讲,黑色素屏蔽生物体免受有害紫外线辐射,防止人类中的DNA损伤,突变和皮肤癌。它有助于色素沉着的多样性,确定皮肤和头发的颜色,并且还可能在眼睛,大脑和免疫系统中发挥保护作用(Vargas等,2015)。在工业上,黑色素在化妆品,护肤和生物启发的防晒霜中找到了应用。它的特性在生物医学领域杠杆作用进行药物输送和成像(Tian等,2003)。此外,基于黑色素的材料高级材料科学,光伏和可持续颜料的各种行业。黑色素的多功能属性继续驱动范围