Na(100)Na(110)Na(111)NaCl(100)NaCl(100)NACL(100)NACL(111)CO -0.25 EV -0.26 EV -0.23 EV -0.23 EV -0.23 EV -0.17 EV -0.17 EV -0.42 EV -0.42 EV CO 2 -0.25 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.35 EEVE -0.35 EEVE EAVE -0.35 EE.-0.35 EE.-0.35 EE.-0.35 EE..25 EV -7.98 EV -7.90 EV -0.88 EV -8.96 EV DMC -0.57 EV -0.56 EV -0.56 EV -0.56 EV -0.48 EV -0.48 EV -0.48 EV -0.47 EV -1.22 EV -1.22 EV CH 3O(甲基) (1,2 -2-甲酸)-4.00 EV -3.74 EV -3.94 EV -0.60 EV -4.60 EV -4.4.66 EV C 2 H 3 O 3 O 3(甲酸甲酯)-4.65 EV -4.53 EV -4.53 EV -4.53 EV -0.61 EV -0.5.50 EV -53 (甲氧基甲盐)-2.46 EV -2.59 EV -2.38 EV -0.48 EV -0.48 EV -3.49 EV -3.49 EV C 3 H 6 O 2(1,2 -2 -propandaly)-3.90 EV -3.74 EV -3.74 EV -3.74 EV -3.94 EV -3.94 EV -0.0.0.0.60 EV -0.60 EV -0.60 EV -0.60 EV -0.60 EV C 4(1 4(1 4(1 4(1 4(1)) -8.14 EV -7.92 EV -7.81 EV -0.69 EV -9.24 EV C 4 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H,H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H” .0.37 EV -0.50 EV C 3 H 6 O 1(1)(1 -2-2 -IL)-0.76 EV -0.66 EV -66 EV -66 EV -1.00 EV -0.49 EV -0.49 EV -0.49 EV -0.87 EV -0.87 EV C3 H 6 O 1(2)(2)(2 -propantaly -1 -1 -1 -1-yl) 51 EV -0.51 EV -0.51 EV -0.51 EV。 -2.84 EV PO(丙烷氧化物)-0.42 EV -0.43 EV -0.14 EV -0.51 EV -0.93 EV
杂环化合物在本质上是普遍的,在天然化合物的化学中起着重要作用,以及蛋白质,脂肪和碳水化合物。这解释了它们在医学中的广泛使用。文献综述表明,目前,血管,腐烂和传染病是影响重死亡的主要疾病。治疗这些组疾病的药物的主要成分是杂环化合物。此外,杂环化合物可以用作染料,结构形成聚合物,还可以用作塑料和橡胶的硫化作用。这类化合物的代表之一是咪唑。咪唑环是氮碱,维生素,酶和氨基酸等重要物质的一部分。咪唑环中替代品的性质对应用区域的影响显着。
6.1碱金属...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
摘要:Ganciclovir(GCV)在治疗和管理眼病毒感染(例如单纯疱疹病毒(HSV)和巨细胞病毒(CMV)视网膜炎)中起着至关重要的作用。然而,GCV的角膜渗透率低,整个膜的渗透性较差,并且药物生物利用度较差,这在治疗眼病方面构成了挑战。除此之外,传统的局部眼药器(例如眼滴,凝胶和药膏)具有限制,例如撕裂较差,药物的停留时间差,频繁的给药间隔,剂量浪费以及系统性吸收过多,导致差的Ocular Bioavaiailito。已经研究了许多策略,以改善GCV的角膜渗透和眼生物利用度。杂志评论是使用2001 - 2023年的图书馆研究方法撰写的,其中包含有关眼科药物输送系统的Ganciclovir配方的信息。杂志评论讨论了一些实现GCV治疗目标的方法。这篇综述的结果表明,其中一些方法,包括脂质体,微乳液,纳米颗粒微球,聚合物纳米颗粒和金纳米颗粒,可以通过增加渗透率,渗透性,生物可利用性GCV以及眼球中的生物可利用性GCV来改善GCV的常规配方。
摘要:在这里,我们报告了使用碱金属铝制凝胶膜的无氢,拓扑氧除外的技术的发展(a x alga,其中a = li,na,k)。这些汞合金提供了一个独特的可调系统,其中选择碱金属,其浓度和Al:GA组成改变了其还原性能。我们证明了这种方法在拓扑上从Lnnio 3(ln = la,nd)的大量和薄膜标本中去除氧的实用性,以形成镍lnnio 2(ln = la,nd)的无限层。例如,Na 0.25藻类在300°C下从LANIO 3提供120小时的散装lanio 2,而在265°C下,相同的汞合金持续48小时,可提供中级LA 2 Ni 2 O 5(LANIO 2.5)。时间和温度的其他变化以及碱金属(a)的选择及其在X藻类中的浓度(x),可以进一步探索拓扑还原性。与基于氢气或氢化物(例如Lih,nAh和cah 2)的标准技术相比,这些汞合金提供了降低潜力的优雅可调性,从而可以控制去除氧气的速率和程度,而无需氢插入的风险。■简介
定义为海上、沿海和工业应用,其中存在碱金属(即钠和钾),并且可能与燃料、空气或水中的硫结合,从而导致热腐蚀。
引用:Gao, Haining 和 Gallant, Betar M. 2020. “碱金属气体电池化学和应用方面的进展。”《自然评论化学》,4 (11)。
卤素空位的迁移是铅卤化物钙钛矿中相分离和材料降解的主要原因之一。在这里,我们使用第一性原理密度泛函理论来比较立方 CsPbBr 3 的块体和 (001) 表面溴空位的迁移能垒和路径。我们的计算表明,由于表面的软结构允许键长变化大于块体,因此表面可能促进溴空位在这些钙钛矿中的迁移。我们计算出表面轴向到轴向溴空位迁移的迁移能仅为块体值的一半。此外,我们研究了用四种不同的碱金属卤化物单层改性表面的效果,发现对于 NaCl 钝化系统,迁移势垒几乎增加到块体值。发现迁移势垒与 CsPbBr 3 表面和碱金属卤化物单层之间的晶格失配有关。我们的计算表明,表面可能在介导卤化物钙钛矿中的空位迁移方面发挥重要作用,这一结果与具有大表面体积比的钙钛矿纳米晶体有关。此外,我们提出了通过使用碱金属卤化物盐钝化来抑制这一不良过程的可行方法。
16:25-16:45(G02-16) 通过 DFT 计算和机器学习方法设计碱金属离子电池负极材料(特邀) 陈海元,电子科技大学,中国
2欧洲委员会(2018年)。 钴:过渡到电动流动性的供求平衡。 3 Faraday Insight 6(2022年9月)。 锂,钴和镍:21世纪的淘金热。 4参见法拉第学院的研究计划,包括旨在减少钴使用并开发完整电池回收框架的项目。 5高级推进中心(2022年6月)。 Q1 2022汽车行业预测。 6 Trafigura(2022年5月)。 加速过渡:刚果民主共和国中正式的手工和小型开采钴的案例。 7参见钴的表6:过渡到电动机的需求供应平衡(2018)。 8“与大多数碱金属不同,全球铜和镍产量的变化是钴生产变化的主要决定因素,而不是供求者2欧洲委员会(2018年)。钴:过渡到电动流动性的供求平衡。3 Faraday Insight 6(2022年9月)。锂,钴和镍:21世纪的淘金热。4参见法拉第学院的研究计划,包括旨在减少钴使用并开发完整电池回收框架的项目。5高级推进中心(2022年6月)。Q1 2022汽车行业预测。6 Trafigura(2022年5月)。 加速过渡:刚果民主共和国中正式的手工和小型开采钴的案例。 7参见钴的表6:过渡到电动机的需求供应平衡(2018)。 8“与大多数碱金属不同,全球铜和镍产量的变化是钴生产变化的主要决定因素,而不是供求者6 Trafigura(2022年5月)。加速过渡:刚果民主共和国中正式的手工和小型开采钴的案例。7参见钴的表6:过渡到电动机的需求供应平衡(2018)。8“与大多数碱金属不同,全球铜和镍产量的变化是钴生产变化的主要决定因素,而不是供求者