1. Yunus, M. 等,空洞对 BGA/CSP 焊点可靠性的影响。微电子可靠性,2003 年。43 (12):第 2077-2086 页。2. Kang, SK 和 AK Sarkhel,电子封装的无铅 (Pb) 焊料。电子材料杂志,1994 年。23 (8):第 701-707 页。3. Menon, S. 等,电子行业中的高铅焊料(超过 85%):RoHS 豁免和替代品。材料科学杂志:电子材料,2015 年。26 (6):第 4021-4030 页。4. Ringgaard, E. 和 T. Wurlitzer,基于碱金属铌酸盐的无铅压电陶瓷。欧洲陶瓷学会杂志,2005 年。25(12):第 2701-2706 页。5. Su, L.-H. 等人,熔融 Sn/Cu 和熔融 In/Cu 对中的界面反应。冶金与材料学报 B,1997 年。28(5):第 927-934 页。6. Choi, S. 等人,铅污染对共晶 Sn-Ag 焊点的影响。焊接与表面贴装技术,2001 年。7. Wood, E. 和 K. Nimmo,寻找新的无铅电子焊料。电子材料杂志,1994 年。23(8):第 709-713 页。8. Mei, Z. 和 J. Morris,共晶 Sn-Bi 焊点的特性。电子材料杂志,1992 年。21 (6):第 599-607 页。9. Yang, C.、L. Wang 和 J. Wang,倒装芯片工艺过程中芯片中超低 k 材料的断裂。材料科学杂志:电子材料,2022 年。33 (2):第 789-799 页。10. Kang, SK 等人,微电子应用中使用的无铅焊料和焊点的微观结构和机械性能。IBM 研究与开发杂志,2005 年。49 (4/5):第 607 页。
进行了地球元素。➢用于量子计算机,光学晶格时钟,天体物理学和等离子体诊断。➢相对论杂乱,处理问题和昂贵的工具等问题。➢前景,例如量子技术,更好的原子钟和新材料。摘要:这种新方法预测了原子数的碱性地球元素的激发状态,从4(Beryllium,be)到88(Radium,ra),这是基于碱接地元素的第二个科学和技术领域。它们具有简单的电子结构(NS²),其特定的激发特征在广泛的领域中找到了应用,从光谱和量子计算到精确定时管理和血浆诊断。在过去的几十年中,理论和实验研究付出了很多努力,以研究和理解其激动的状态。计算机化的变化,例如使用许多人体扰动理论,密度功能理论(DFT)和其他相对论校正,已经显着改善了激发态的转变概率,寿命和振荡者强度的预测。其他计算方法(例如配置相互作用(CI)和耦合簇(CC)理论)提供了有关电子相关性和精细结构分裂的更多信息,以提供更大的碱性地球元素,例如钡和radium和radium。本评论论文重点介绍了碱金属激发状态的最新进步,当前趋势和新技术。应用高分辨率光谱法(如激光诱导的荧光(LIF)光电离和两光子效率)的应用,但是可以更好地确定能级,衰减速率和自动离电现象。超快速激光器和可调激光系统的进步有助于实时评估过渡激发现象。利用现代技术,例如激光冷却和捕获,可以对激发状态进行显着操纵,从而在量子信息技术和原子钟中显着进步。激发态在碱 - 地球物种中的应用是多种多样的。基于光原子时钟基于光原子时钟的过渡已开发出来,以确定一天中的新标准,以无法实现的准确性,从而质疑国际单位系统(SI)中第二个的定义。这些量子计算元素的亚稳态状态被视为Qubits,其量子特性被用来维持延长的相干时间并促进更容易的控制。此外
塞尔维亚经济概述塞尔维亚的经济是中欧的基于服务的中等收入经济,大三级部门占国内总生产总额(GDP)的三分之二。经济在自由市场的原则上发挥作用。2022年的名义GDP预计将达到627.21亿美元,即人均9,164美元,而GDP基于购买力平价(PPP)的1648.35亿美元,为人均24,084美元。塞尔维亚经济最强大的部门是能源,汽车行业,机械,采矿和农业。该国的主要工业出口是汽车零件,碱金属,家具,食品加工,机械,糖,轮胎,衣服。贸易在塞尔维亚经济产出中起着重要作用。主要贸易伙伴是德国,意大利,俄罗斯,中国和邻近的巴尔干国家。Belgrade是塞尔维亚的首都和经济核心,也是该国大多数主要塞尔维亚和国际公司的所在地,以及塞尔维亚国家银行和贝尔格莱德证券交易所。Novi Sad和Niš分别是第二大城市,也是贝尔格莱德之后最重要的经济枢纽。关键部门农业农业和粮食生产的概述是塞尔维亚最关键的出口部门,占该国GDP的10%以上,约占所有出口的20%。农业,林业和水管理部(MAFWM)负责政府的国际和国内农业贸易策略,食品加工,农村发展,林业和水管理。塞尔维亚是西巴尔干地区最大的农业市场,具有强大的农业生产和食品加工传统。塞尔维亚是非转基因玉米和覆盆子生产的全球领导者。食品加工行业约占塞尔维亚整个加工行业的三分之一。目前,超过15,000家食品业务正在运营。其中约90%是微型,中小型企业。该行业雇用了100,000多名员工,并且是该部门的罕见例子之一,这些局势尚未受到COVID-19危机的不利影响。按价值按价值划分的最大小节是乳制品,肉,水果,蔬菜,葡萄酒和糖果。能源塞尔维亚国家权力公用事业EPS近70%的煤炭电力占煤炭的70%,并从水力发电中产生了近30%的电力,其中很小的一部分来自风和太阳能。塞尔维亚大量补贴煤炭和电价,抑制了竞争。
相对于异常B和C,三角洲和回声锌靶区域之间的土壤强烈富含银。现在概述了两个从2.0 ppm到24.8 ppm(或24.8 g/t)银的广泛的亚平行区域。名为Fox(长度1.0 km)和帽子(长700 m)的区域与附近的大锌靶和地层图大致平行。特别感兴趣的是在上FOX目标中返回10 ppm(或10 g/t)银的多站土壤样品的400-500 m趋势。稀疏露头的初步映射表明这些新的银带托管在页岩中。“这一探索阶段在印地(Indy)取得了巨大的成功,我们期待不久的将后续计划开始。包括这些广泛的新银靶和1.9公里长的回声锌靶(也在2021年发现,我们现在在印地都有8.2公里的高质量,基础和贵金属目标,这可能是加拿大此类无障碍的未测试目标,这可能是最大的未经测试的目标积累。”“我们看到了在探索和钻探计划之前的几年,这是由于西沙漠期权协议和计划的美国西金属IPO而获得的大量现金支付(请参阅NR2021-05)。”后续计划现场工作人员计划在10月初返回印地,以跟进这些结果,并开始在北部主要趋势区域(Delta,Echo,Fox和Hat)进行初步准备进行钻探。将修复一条现有的小径,以提供通往三角洲地平线和帽子目标的道路通道。合格的人Brian McGrath,B.Sc.,P.Geo。此外,土壤采样将详细介绍位于B和异常C之间的另一个潜在的银靶。还计划在Fox和Hat Silver目标上进行进一步的勘探和采样,以更好地了解这些新的贵金属目标的银的地质和分布。关于Inzinc Inzinc的通过探索和促进其对多个北美碱金属项目的兴趣而着重于增长。 位于不列颠哥伦比亚省中部的可通行的Indy项目(100%赚钱)包括近25公里长的趋势的近地面矿化和大型未经测试的勘探目标的发现,并有可能发现新的区域规模锌带。 西部沙漠期权(美国西部金属的100%选择)可通过在美国西部金属的所有权中提供大量现金支付和持续的杠杆作用,因为它为西部沙漠项目的发展提供了预先利益的发展(计划于第3季度2023年)以及北美的风暴铜和铜战士项目。 此外,在行使西沙漠选择后,Inzinc将从从西沙漠开采的indium出售中获得50%的收入。 Inzinc Mining Ltd. Wayne Hubert ____________ ____________进一步信息联系人联系:电话:604.687.7211 Joyce Musial网站:www.inzincmining.com公司事务副总裁电话:604.317.2728电子邮件:joyce@inzinkincinc.com 1 dave heberleinec.com 1 dave heberleinec.geo。 Heberlein Geoconsultants的已经审查,验证并提供了第1阶段2021年地球化学计划结果的解释性摘要。 NI43-101中定义的合格人员已批准了本新闻稿的技术内容。通过探索和促进其对多个北美碱金属项目的兴趣而着重于增长。位于不列颠哥伦比亚省中部的可通行的Indy项目(100%赚钱)包括近25公里长的趋势的近地面矿化和大型未经测试的勘探目标的发现,并有可能发现新的区域规模锌带。西部沙漠期权(美国西部金属的100%选择)可通过在美国西部金属的所有权中提供大量现金支付和持续的杠杆作用,因为它为西部沙漠项目的发展提供了预先利益的发展(计划于第3季度2023年)以及北美的风暴铜和铜战士项目。此外,在行使西沙漠选择后,Inzinc将从从西沙漠开采的indium出售中获得50%的收入。Inzinc Mining Ltd. Wayne Hubert ____________ ____________进一步信息联系人联系:电话:604.687.7211 Joyce Musial网站:www.inzincmining.com公司事务副总裁电话:604.317.2728电子邮件:joyce@inzinkincinc.com 1 dave heberleinec.com 1 dave heberleinec.geo。 Heberlein Geoconsultants的已经审查,验证并提供了第1阶段2021年地球化学计划结果的解释性摘要。 NI43-101中定义的合格人员已批准了本新闻稿的技术内容。Inzinc Mining Ltd. Wayne Hubert ____________ ____________进一步信息联系人联系:电话:604.687.7211 Joyce Musial网站:www.inzincmining.com公司事务副总裁电话:604.317.2728电子邮件:joyce@inzinkincinc.com 1 dave heberleinec.com 1 dave heberleinec.geo。已经审查,验证并提供了第1阶段2021年地球化学计划结果的解释性摘要。NI43-101中定义的合格人员已批准了本新闻稿的技术内容。有关前瞻性陈述的警告说明,该新闻发布包含适用证券立法的含义内的前瞻性陈述和前瞻性信息(统称为“前瞻性陈述”)。所有陈述(除了历史事实的陈述)外,本文中包含的所有陈述都是前瞻性陈述。尽管公司认为此类陈述是合理的,但不能保证这种
核应用。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18467氢能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18467氢的化学和核能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18468 H(0)的分子级生产过程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18469简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18469形成了碱启动子的普通氢rydberg物质和功能。。。。。。。。。。。。。。。。。。。。。。。。。18470解离氢的吸附。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18471碱金属rydberg种类解吸。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18471碱金属RM簇Desorpen。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18472氢rydberg簇吸收。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18474转换H(1) / H(0)。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>H(0)形成的18474次表面。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>H(0)形成的18474次表面。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。18474碳对面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18474过渡金属面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18474金属氧化物对面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18475福语H(0)遇到困难。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18475 H(0)的破坏。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18475提出了进一步的发展。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18475工业催化方面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18475竞争利益声明。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18476参考。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18476
乔治·贝佩特·康科迪亚大学(George Bepete Concordia University),7141 Sherbrooke St. W.,蒙特利尔,QC H4B 1R6。电子邮件:gbepete@gmail.com,george.bepete@concordia.ca,电话:+15148482424 ext。3268(办公室)学术任命,蒙特利尔大学,QC大学材料工程助理教授,2024年 - 现任物理学系2024年助理教授 - 宾夕法尼亚州立大学公园,宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚大学助理研究教授2022 - 2022 - 2024年教育大学教育大学,美国韦特沃特夫妇,乔尼亚工厂,乔尼亚工厂,美国邮政编码。尼尔·科维尔论文:氮掺杂碳纳米管的化学蒸气生长,用于在有机光伏设备津巴布韦大学,哈拉雷,哈拉雷,津巴布韦MSC,可再生能源2009国立大学和科学大学,科学和科学技术,布拉维奥,布拉维奥,Zimbabwe BSC(HONS),2016年荣誉奖。过去的研究经验宾夕法尼亚州立大学物理学系,宾夕法尼亚州立学院,2017-2022,博士后研究顾问:毛里西奥·塞伦斯教授的主要责任包括对使用二维(2D)材料纳米材料合成的研究,该研究使用将分层的材料和将其组成型成型的型号和插入型成型的型号和插入型成型的物质插入中置于效率上的二维材料(2D)材料,以及超导性,超级电容器,碱金属离子电池和光电电池。将石墨烯还原为氢化石墨烯中的还原性功能,并研究了光电中应用的结构和性质之间的关系。达勒姆大学,英国化学系2016年至2017年博士后研究顾问:Karl Coleman教授的主要职责包括有关全长单壁碳纳米管(SWCNT)还原性解散的研究以及对单个SWCNT的电气和光学特性的研究。国家科学研究中心,CNRS,BORDEAUX,法国,2014 - 2026年,博士后研究顾问:Alain Penicaud教授的主要职责包括研究对单层石墨烯的无表面活性剂的无表面活性分散剂的研究,并在水中稳定在水中稳定水的碳纳米管,使用氢氧化离子稳定在水中,使用氢氧化离子静水技术,随后将其供应量化技术。Witwatersrand大学,约翰内斯堡,南非,2010年–2014博士学位顾问:Neil Coville教授化学蒸气的氮掺杂碳纳米管在有机光伏设备中应用。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。
电极| SE接口。3–5其中一些问题与SE在电极材料方面的电化学稳定性以及SE分解的相互作用的形成有关。如果可以形成稳定的固体电解质相(SEI),例如在常规锂离子细胞中石墨和优化的液体电解质之间的界面,这种初始不稳定不一定是一个问题。6 SE对碱金属的分解会导致形成其电子性能将决定其增长的相互作用的形成:7(a),如果大多数分解产物在电子上是电子上绝缘的,那么SEI的增长将最终停止,并且对电源的电源不可能(如果能够远离电源),则可能会影响电源的电源,如果它可能会影响电源,则该电源可能会造成电源的影响,如果是by的电源,则可以在电源范围内构成,而该障碍物是可以在电源上造成的,如果是by sei的范围,则可以在电源上造成,而该障碍物是可以在电源上造成的。混合离子电子传导(MIEC)之间的生长将不间断,直到消耗所有SE并发生短路。后一种相间类型对于具有持久性能的SSB不兼容。可以访问相间的化学组成对于确定产生哪种类型的相间以及是否在细胞中达到稳定性至关重要。X射线光电子光谱(XPS)是用于化学组成分析的出色表面表征技术。分析埋入界面的组成是一个挑战,因为XPS的深度分辨率有限。最近,已经开发了各种原地8-10和Operando技术11,12来解决此问题。XPS的深度分辨率有限,是由于测量的性质归因于收集光电子的收集,这些光电子在距离最初与原子核相距不远后从样品表面逸出,它们最初与它们最初界定的原子核(通常在10 nm内,在小于10 nm的范围内,用于由Alkα源激发的光电子,并经过Na的金属)。对于所有这些,其想法是使SE表面上的碱金属层足够薄,以使SE发射的光电子(可能是由于相互重点)穿过金属叠加层。为了产生碱金属层,一种技术包括将其从由相同的碱金属组成的计数器电极上镀在SE表面上,同时分析了相间产物Operando。11在这种情况下,可以从任何XPS仪器中存在的电子洪水枪向SE表面提供低能电子。尽管该技术已经证明了其表征相互作用组成的功效,但可以从中提取的信息程度(例如碱金属层的增长率行为)尚未得到充分理解。这项研究的目的是介绍可以从该操作方案中提取的信息深度。结果分为两种成对的文章(第一部分:实验;第二部分:理论13)。在第1部分中,研究了NASICON家族的SE表面上Na金属(Na 0)的电化学稳定性(Na 3.4 Zr 2 Si 2.4 P 0.6 O 12,进一步称为NZSP)。总的来说,这项工作介绍了一个了解增长的框架nzsp是因为其高离子电导率使其成为有前途的候选SE,14,但其对NA 0的稳定性仍在争论中。理论DFT计算预测Na 3 Zr 2 Si 2 PO 12(由Na 1 + X Zr 2 Si X Zr 2 Si X P 3-X O 12,0≤x≤3定义的NASICON组成空间的最接近的阶段是0 v在Na/Na +的Na/Na +应不稳定的Na/Na 2 ZROS na 2 ZRO和Na 2 ZRO 3,4 sRO 3,4 sRO 3,4 s sRO 3,4 s sRO 3)。15–17在Na 0 | Na 3 Zr 2 Si 2 PO 12也通过电化学阻抗光谱和前XPS研究在实验中提出。17,18本研究将区分两种Na 0 | NZSP接口:第一个是Na 0和抛光的NZSP(NZPS抛光)颗粒之间的接口;第二个是Na 0和As-Sinter的NZSP(NZSP AS)颗粒之间的接口。此比较旨在阐明NZSP表面化学对其对Na 0的稳定性的影响。的确,在我们小组的先前研究中确定了热处理促进在As-Sintered NZSP样品表面上形成薄的Na 3 PO 4层,当NZSP表面抛光时,该层可以去除。14 AS Na 3 PO 4是一个阶段,预测通过DFT计算对Na 0稳定,19该比较的目的是评估Na 3 PO 4作为自我形成的缓冲层的效率。对第一个实验部分的讨论着重于从XPS拟合模型中提取信息,以告知Na 0 | nzsp抛光和Na 0 | Na 0 | Na 3 PO 4 | NZSP接口的相间形成动力学。时间解析的电化学阻抗光谱(EIS)也被用来评估相互作用的离子电阻率。