人类生命的快速发展会影响不断增长的能源需求以及寻找可持续替代能源的创新需求。已经开发的创新之一是太阳能电池技术,可以将阳光转化为电能。然而,通常使用的透明底物或电极的高生产成本,例如FTO(氧化氟锡)和ITO(Indium Tin氧化物)是主要障碍。因此,本研究探讨了将图形氧化物用作太阳能电池制造中的替代半导体材料。玉米棒含有碳化合物,可以用作图形氧化物生物量的来源,用作纳米复合材料Fe 3 O 4-图形氧化物。这项研究的目的是确定组合物变化对使用悍马修饰方法从玉米棒的基本成分合成的纳米复合fe 3 O 4-纳米复合氧化物的光学特性的特性的影响。使用UV-VIS测量吸光度,透射率,反射率和间隙能量,成分变化为40%:60%,30%:70%和20%:80%的结果。在混合物中,获得的带的能量值随着磁铁矿(Fe₃o₄)的增加而降低,这表明纳米复合fe fe₃o ox -图形氧化物是半导体,值为3.39 eV(40%:60%),3.62 ev(3.62 ev(30%:70%:70%)和3.94 EV(3.94 EV(20%):80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%:80%。关键字:玉米棒,纳米复合fe 3 o 4-氧化物图形,光学特性,紫外线 - vis,间隙能量
能量的单向流动和物质的循环是一般生态学的两大原则(Odum,1963),不仅适用于生物圈及其组成生态系统,也适用于生态系统内的子系统。事实上,生态系统及其子系统只是自然现实的方便抽象。每个子系统的界限无法准确定义,因为许多生物都属于多个子系统。此外,每个子系统都不是孤立存在的,而是与其他子系统相互作用。因此,根微生物系统只是一个概念,它认识到陆地生态系统中能量流动的最重要途径之一是从植物根部直接流向微生物。根微生物系统几乎完全由异养生物组成,因此依赖于外部能量来源,即植物叶子。因此,考虑整个植物的能量流动是适当的。然而,这里不会讨论叶圈的微生物群落。叶子中的自养细胞(在某种程度上,枝条系统的其他部分)将阳光的能量转化为“还原碳单位”的化学能。碳是生物体通过化学键储存和转移能量的载体(Mooney,1972 年)。叶子中合成的大部分富含能量的物质被运输到植物根部,然后运输到微生物。在整个系统中,能量用于生长、繁殖、维持等过程,但根据热力学的经典定律,能量最终会全部消散并从系统中流失。在植物-微生物系统中,会合成许多碳化合物。并非所有这些化合物都会分解为 CO 2 ,甚至不会部分代谢。在某些情况下,热值未知或难以确定。因此,在目前的讨论中,方法将是绘制碳从固定到储存并在系统的不同组成部分中利用的移动。这将间接表明能量通过系统的转移。农学、生态生理学和土壤微生物学的最新进展提供了新的见解
20 世纪 40 年代早期,Weber 和 Black 建议使用卵磷脂和聚山梨醇酯来中和季铵化合物的抗菌作用 (6)。1965 年,AOAC 认可该方法用于抗菌测定,并将其应用扩展到所有阳离子洗涤剂。1978 年,FDA 将其作为每次化妆品微生物检查的预增菌培养基。化妆品的化学成分很有可能通过生物体的新陈代谢而改变,从而导致化妆品变质并对使用者造成伤害 (1,5,7)。直接菌落计数和增菌培养是从化妆品中分离微生物的首选方法。Letheen 这个词代表卵磷脂和聚山梨醇酯 (tween) 80 的组合。建议使用含有 Triton X-100 的 Letheen 肉汤来检测酵母和霉菌,因为这种肉汤可以让大多数生物大量生长。 Triton X-100 是非离子型的,可分散微生物,使计数更容易。蛋白胨、HM 蛋白胨 B 为微生物提供含氮营养物质、碳化合物和微量元素。在培养基中加入卵磷脂和聚山梨醇酯 80 可以从含有化妆品中使用的消毒剂或防腐剂残留物的材料中回收细菌。加入聚山梨醇酯 80 可消除酚类化合物、六氯酚和福尔马林,并与卵磷脂一起中和乙醇 ( 2 )。卵磷脂还可以中和化妆品中的季铵化合物。氯化钠可维持培养基的渗透平衡。Triton X-100 可用作表面活性剂。化妆品中含有防腐剂,在接种过程中应至少部分灭活,而该培养基有助于稀释和中和。
紫罗兰色胆汁葡萄糖琼脂板(统一的)预期用途紫罗兰红胆汁葡萄糖琼脂板(统一)用于根据usp/ep/ep/ep/bp/jp/jp/jp/jp/ip/anconized方法来隔离和培养药物的肠杆菌科。摘要肠杆菌科包括乳糖发酵大肠菌菌,大肠杆菌的非乳糖发酵菌株以及其他参与食物损坏的沙门氏菌和志贺氏菌的非乳糖发酵物种。由于食品和乳制品的潜在污染,很重要的是检测肠杆菌科的成员而不是传统的大肠菌菌细菌。紫色红胆葡萄糖琼脂板(统一)是紫罗兰色琼脂的修饰。mossel等人,通过添加葡萄糖,修饰含有紫罗兰色胆汁琼脂的乳糖。Mossel等人的进一步工作表明,可以省略乳糖,从而导致紫罗兰色胆汁葡萄糖琼脂的制定。在培养基中,葡萄糖均由肠杆菌科的所有成员发酵,因此紫罗兰色胆汁葡萄糖琼脂(VRBGA)具有假定的肠杆菌科。VRBGA用于列举食品样品中的肠杆菌科。酪蛋白和酵母提取物的原理胰腺消化物提供营养,氨基酸,碳化合物,维生素B复合物,矿物质和微量元素。葡萄糖是一种能源。胆汁盐和晶体紫抑制革兰氏阳性细菌。中性红色是pH指示器。琼脂是固化。其他材料所需的细菌孵化器。使用指令配方 *成分G/L明胶7.0酵母提取物的胰腺摘要3.0葡萄糖一水合物10.0胆汁盐1.5氯化钠5.0中性红色0.03 Crystal Viret 0.002 Crystal Violet 0.002琼脂15.0 *调整以适应适合性能参数。
半个多世纪以来,患者开始使用加压定量吸入器 (pMDI),这是一种方便、有效的缓解症状和持续管理哮喘和慢性阻塞性肺病 (COPD) 等疾病的工具。自那时起,这项创新已成为哮喘和 COPD 患者的主要药物输送设备,帮助了全世界数百万人。近代历史也让我们更好地了解了人类活动如何对地球产生负面影响,其中包括越来越多的证据表明大气中二氧化碳水平的增加与全球气温上升之间存在因果关系。这些环境科学方面的重要发现对制药公司及其供应链合作伙伴产生了重大影响,特别是在 pMDI 方面。例如,1987 年,《蒙特利尔议定书》提出了一条途径,以消除已证明对臭氧层有害的化合物的使用,其中包括氯氟烃 (CFC),它们也用作 pMDI 中的推进剂。尽管该行业被免于 10 年 CFC 逐步淘汰期限,以保持对呼吸系统疾病患者的持续供应,但该行业迫切需要寻找具有低毒性和低可燃性等必要属性的替代推进剂,同时还要降低全球变暖潜能值 (GWP)。答案是两种氢氟烷烃 (HFA):1,1,1,2-四氟乙烷 (HFC 134a) 和 1,1,1,2,3,3,3-七氟丙烷 (HFC 227a)。最先引入的是 HFA 134a,1996 年美国食品和药物管理局 (FDA) 批准将其用于硫酸沙丁胺醇的 MDI。此后 25 年,使用 HFA 推进剂的产品数量持续增加,FDA 已于 2012 年全面禁止生产和销售基于 CFC 的产品。尽管非推进剂技术方面取得了显著创新,例如干粉吸入器 (DPI) 和最近的软雾吸入器 (SMI),但基于 HFA 的产品现在占据主导地位,至少有 13 家公司为美国市场生产品牌或通用的基于 HFA 的吸入器。1 随着时间的推移,随着与气候相关的担忧加剧,限制使用具有 GWP 的产品的重点引起了人们对被称为 F 气体的更广泛氟碳化合物的关注,其中包括 HFC 134a 和 HFC 227a。F 气体约占温室气体排放总量的 2%,主要用于制冷和空调行业。虽然它们可能不是造成臭氧层损耗的原因,但
北极陆地生态系统目前存储在地球高纬度地区的最大碳。在过去30年中,这些区域的温度水平的上升速度是全球平均水平的两倍,为每十年0.6℃(Cohen等,2014; Schuur等,2015)。这是一种强大的现象,称为北极扩增(Fengmin等,2019)。土壤微生物在将碳化合物转化为有机或无机化合物中起着重要作用,由于变暖,它们的代谢率提高。当微生物分解有机碳时,它们会释放温室气体(GHG),例如二氧化碳(CO 2),一氧化二氮(N 2 O)和甲烷(CH 4),导致全球气候变化(Mehmood等人,2020年,2020年; Marushchak等人,2021年)。在过去的800,000年中,大气二氧化碳,N2O和CH4的水平显着增加。CO 2的目前水平为390.5份百万分之390.5份,n 2 O的零件为390.5份(ppb),CH 4分别为1,803.2 ppb,这些水平分别为40、20、20和150%,比工业时代之前(Tian et et an e an and an an and an and and an and and and and and and and and and and and and and and and and and and and and and and。ch 4,仅次于CO 2之后的第二大最重要的温室气体,占自工业前时代以来变暖剂的人为辐射强迫的20%。此外,CH 4的温室作用是100年内CO 2的28倍(Tian等,2016; Ganesan等,2019; Hui等,2020)。在2000年至2017年之间的生物地球化学模型和大气反转估计,CH 4排放量为15至50 tg/yr(Saunois等,2016,2020)。在2000年至2017年之间的生物地球化学模型和大气反转估计,CH 4排放量为15至50 tg/yr(Saunois等,2016,2020)。由于北极扩增,全球气候变化将导致北极土壤变暖和CH 4排放。然而,尚未发现变暖对CH 4释放的影响,从而导致气候变化。微生物代谢过程长期以来一直是对气候变化的关键驱动因素和反应者(Singh等,2010)。根据研究发现,不同的土壤微生物通过与微生物组成相关的不同代谢途径产生温室气体,从而提高了对温室气体排放的理解。例如,大多数土壤微生物通过分解和异养呼吸对CO 2排放产生了巨大贡献(Watts等,2021)。类似于CO 2排放,生物CH 4的排放受土壤微生物甲烷生成和CH 4氧化的控制,来自土壤,湖泊和其他陆地陆地,尤其是北极土壤(Nazaries等,2013; Tveit et al。微生物甲烷生成是一组厌氧甲烷古细菌进行的过程(Song等,2021)。虽然其他微生物可以分解CH 4,从而减少CH 4向大气中的释放,但微生物甲烷发生对全球CH 4排放造成了很大的贡献,并且了解其对变暖时间的反应至关重要,这对于预测有效的温室气体和气候变化之间的反馈(Lee等人,2012年; Chen等,2020年)。此外,预计在按年来衡量的长期变暖的情况下,微生物组成将发生变化(Deslippe等,2012; Pold等,2021; Zosso等,2021; Rijkers等,2022; Zhou等,2023)。同时,生物CH 4排放也是由于长期微生物发酵而变暖引起的(Altshuler等,2019; Hui等,2020; Zhang等,2021)。但是,气候变化是一个过程
presence also confirmed in Moto2 Thanks to the experience accumulated in 43 championships in the premier class (MotoGP and 500) during which the bikes with Brembo brakes have won 32 World Rider Championships, 33 World Constructors' Championships and triumphed in over 500 GPs with the main protagonist teams, Brembo has created customized braking systems for each of the 22 riders who will participate in the 20 th MotoGP Championship,该课程于2002年推出,以取代500级。所有11支团队都决定再次选择Brembo组件确保的高性能,可靠性和安全性,其中包括:制动卡钳,碳盘和垫子,制动器主缸和摩擦大型圆柱体。在2021赛季中,各种技术解决方案将使Brembo能够确保每个人都可以根据驾驶方式,轨道功能和比赛策略来定制制动系统,并最佳结合制动系统组件的特征。GP4卡钳在2020年开始的MotoGP锦标赛开始引入,GP4是一种新的Monobloc铝制卡钳,该卡尺是从一块坚固的铝制加工的,带有径向附件和四个活塞。它已成为大多数MotoGP骑手的参考卡钳,尽管其中一些人由于习惯和自行车本身的不同性能而继续更喜欢使用2019卡钳。此卡钳的特征是极端设计,外体上存在鳍片,其中包括具有抗吸血器系统的放大卡钳等创新元素。以这种方式,用同样的力在骑手的杠杆上,制动扭矩被放大。详细说明,卡尺的特征是一个系统,该系统允许每个骑手放大制动扭矩,含义在制动动作过程中,骑手会产生一种力,该力是由活塞上制动液的液压添加到的力。相反,由于弹簧设备,防拖网系统允许在系统中没有压力的情况下强烈减少残留扭矩,并避免垫子和盘之间的接触。这避免了这种不必要的力量的形成,这种力量往往会无意间减慢自行车。十种碳制动盘的解决方案大多数骑手应选择直径为340 mm的盘,在高质量和标准(低质量)之间分开。一些团队将继续使用直径为320毫米的标准和高质量光盘。此外,对于每种制动盘和垫的格式,可以使用两种不同的碳化合物,以不同于初始制动咬合和对高温的耐药性。总体而言,选择制动盘时有十种不同的选项:五个圆盘几何,每个圆盘几何形状都有两个物质规格(高质量和标准质量)。在这五个几何形状中,从本赛季开始,Brembo将为球队提供新颖性:这是通风的碳盘。该光盘的特征正是通风,旨在增加热量交换,从而改善光盘本身的冷却。这是一种专门针对电路设计的解决方案,这些解决方案预计对于诸如Spielberg,Motegi,Sepang或Buriram等制动系统非常严重。碳提供了三重优势:减少unsprang质量,这是从开始到终点线的相同摩擦系数,以及使用钢盘的使用可能带来的残留扭矩问题。专注于制动器的感觉,可用于轴距的制动器主缸的类型在轴距方面有所不同,以使控制的种族和“反应性”作为骑手感觉的函数。此外,每辆摩托车都具有远程调节器,骑手的左手使用,即使在打开电路时,也可以改变制动杆的位置。
10级科学教学大纲分为四个主要主题:材料,生活世界,事物的工作方式以及自然现象和资源。这些也可以分别归类为化学,生物学,物理学和环境科学。NCERT解决方案10级科学的目的是通过详细解释关键概念来提供对每一章的全面理解。通过使用这些解决方案,学生可以在考试中提高自己的痕迹,并保持领先地位。时间管理在准备考试时至关重要。学生应为每个主题分配足够的时间,更多地关注他们弱的领域。NCERT解决方案将有助于确定这些弱点,并使学生能够相应地集中精力。在进行解决方案之前,必须彻底了解章节概念。10级科学教学大纲分为四个单元。单元涵盖五章:化学反应和方程,酸,碱,盐,金属和非金属,碳及其化合物以及元素分类。单元第二章由四章组成,分别是人类生活过程,从事控制和协调活动的身体部位,单细胞和多细胞生物的繁殖以及遗传模式。第三单元涉及“事物的工作原理”,涵盖了诸如光现象,人眼,电力,电路,电阻,电流的磁效应和应用等主题。第1章介绍了10类科学的NCERT解决方案中的化学反应和方程。第四个单元的重点是自然资源,包括传统和非规定的能源,生态系统,食物链和由人类活动引起的环境退化。通过遵循这些单位并彻底理解这些概念,学生可以在10级科学考试中表现出色,并为未来的研究奠定坚实的基础。本章向学生介绍化学变化的指标,例如物理状态,颜色,温度和气体演化的变化。这些指标是通过实验示例来解释的。也涵盖了化学方程式的写作和平衡,强调了它们对化学反应的象征性表示和质量保护定律。通过合适的实例和化学方程讨论了各种类型的化学反应,例如组合,分解,置换,双重分解,放热,吸热和氧化还原反应。第2章侧重于酸,碱和盐。酸被定义为变成蓝色石榴石并具有酸味的物质,当溶解在水中时会产生H+离子。碱被描述为苦味的物质,变成红色石碑蓝色,在水溶液中产生OHION。强酸完全分离为H+离子,而强碱会完全解离形成OH离子。讨论了与酸接触时的甲基橙和嗅觉指标,例如丁香的消失气味。引入了pH量表,范围从0(高度酸性)到14(高碱性),表明溶液是酸性,碱性还是中性。本章还探讨了产生盐的酸与碱(中和反应)之间的反应,这些盐可能是中性,酸性或基本的,具体取决于用于形成它们的酸或碱的强度。氯 - 阿尔卡利工艺使用盐溶液,形成化学物质,例如漂白粉,洗手苏打,小苏打,巴黎石膏。第3章讨论金属和非金属的物理特性,例如熔点,延展性和锻造性。金属是根据这些特性而区分的,但是尽管非金属是碘的光泽外观,例如碘的光泽外观。分类基于化学特性。与氧,水,酸和其他金属盐的金属的化学反应进行了讨论,重点是反应性系列。金属氧化物具有基本的性质,但有些可以既是酸性又可以是碱性的,称为两性氧化物。离子键,从而在正带和负电荷的离子之间产生了强烈的吸引力。使用Bohr模型和刘易斯结构来解释键的形成。金属提取涉及去除杂质,根据金属反应性加工以及通过电解或其他方法进行精炼。在天然状态下发现了较高的反应金属等反应性金属,而较低的反应性序列需要处理。使用诸如上油,油脂,电镀或合金等方法,可保护萃取的金属免受腐蚀。第10级科学的NCERT解决方案第4章侧重于碳,碳是在许多有机和无机化合物中发现的高度用途元素。这种多功能性源于已探索的四气和串联特性。碳通过与其他元素的电子共享形成键,这一方面称为共价键形成。在氧气,氮气和其他共价形成的化合物的背景下也讨论了这种键合。本章深入研究了不同碳化合物的结构,包括其刘易斯点结构和电子构型。它根据其结构排列(直链,支链或环状)以及它们是饱和(仅单键)还是不饱和(双键或三键)对有机化合物进行分类。功能组,包括羟基(-OH),羧酸(-cooh),氯(-cl),酮(-CHO),醛(-CHO),醛(-CN)和氰化物组。本章进一步讨论了这些复杂分子的系统命名方法,强调了特定的碳基化合物,例如乙醇和乙酸及其物理和化学特性。转到第10级科学的NCERT解决方案的第5章,该解决方案涉及元素的定期分类。当前,确定了118个已知元素。为了有效地研究每个元素,科学家试图以逻辑顺序对它们进行分类,以预测其物理和化学特性的趋势。但是,约翰·沃尔夫冈·多伯雷纳(JohannWolfgangDöbereiner)(1817)和约翰·纽兰兹(John Newlands)(1866年)的初步尝试,例如《三合会方法》和纽兰兹的八度法,由于局限性而未能普遍应用。原子数成为分类的关键标准。dmitri Mendeleev通过根据其原子质量安排元素来开发一种更准确的方法。他观察到这种方式安排时性质的周期性复发,导致他制定了定期定律:“元素的性质是其原子质量的周期性功能。”Mendeleev的周期表具有垂直柱(组)和水平行(周期)。该系统比以前的方法更准确,可以通过在其表格中留出空白来预测缺失元素。模型具有一些优点和缺点,导致现代周期系统的出现。同一组中的元素共享相同数量的最外部电子,而同一时期的元素具有相同数量的最外壳。此模式可以预测增加或减少。本章探讨了许多这样的趋势。第6章 - 生命过程本章深入研究了各种生物学过程,使生物能够维持生命。这些包括消化,呼吸和循环系统。这些过程的重要性得到了强调,因为它们允许通过消化,通过呼吸氧合和通过循环运输营养的食物消费。本章首先讨论营养,该营养涉及一种有机体吸收食物,利用食物来进行能量,生长,维修和维护。自养营养和异养营养,其中自养营养用光合作用的植物举例说明。细胞生物中探索了细胞营养。异营养营养是由动物体现的,包括寄生,腐生和全二营养等不同类型。人类营养,其中包括唾液腺,舌头和牙齿。食物通过食道进行,在肝脏的胆汁汁和含有消化酶的胰汁的帮助下进行消化。呼吸是另一个关键过程,涉及气体交换(呼吸)和细胞呼吸(分解简单的食物以获取能量)。详细讨论了人类呼吸系统,突出了其成分,例如咽,支气管,肺,膜片,以及吸入和呼气的机制。循环涉及在整个人体中运输养分和废物。血液通过心脏泵送并通过静脉运输,讨论了红色和白色血细胞等不同成分。还探索了心脏的四个腔室。在植物中,简单化合物(例如CO2)是通过光合作用吸收的,而植物生长所需的其他原材料则通过根部从土壤中吸收。排泄是另一个生物学过程,涉及从体内清除有害的代谢废物。生物使用各种策略来实现这一目标。人体的排泄系统由两个肾脏,两个输尿管,一个膀胱和尿道组成。控制和协调系统涉及神经系统,激素和反射作用。有三种类型的反应:反射,自愿和非自愿。生物通过创建DNA拷贝和细胞设备来繁殖。各种方法包括裂变,碎片化,再生,出现,孢子形成和营养繁殖。有性繁殖涉及两个人,产生更大的差异。在开花植物中,授粉之后是受精。人类繁殖系统包括睾丸,VAS延迟,囊泡,前列腺,尿道和阴茎,以及男性的卵巢,输卵管,子宫和雌性阴道。有性繁殖涉及雌性阴道中的精子和输卵管中的施肥。遗传和进化论涉及变异积累的长期后果。Mendel的规则决定了性格继承,同时解决了性别确定。可以通过活物种和化石研究进化。复杂的器官可能由于生存优势而发展。由环境因素引起的变化是无法遗产的。物种形成。进化关系是在分类中追溯到的,表明所有人类属于非洲进化并在全球蔓延的单一物种。光反映和折射,表现出诸如反射和折射之类的现象。人类的视野和折射章节深入研究了人类视力和折射的世界,探索光与我们的眼睛相互作用。首先,它讨论了由法律(尤其是球形镜子)支配的光的反射。人类活动对环境有重大影响。使用了球形镜的使用,包括凸面和凹面镜等类型,以及诸如曲率和焦距的关键术语。除了镜子外,本章还涵盖了折射,这涉及从一种介质传递到另一种介质时的光弯曲。Snell的定律控制着折射,并通过矩形玻璃板的示例引入了折射率和光密度等概念。还讨论了镜头,重点介绍其特性及其工作原理,包括融合和分化的镜头,以及双凸和凹面镜头的示例。镜头公式将焦距与图像距离和对象距离联系起来,而符号惯例则牢记为准确。此外,本章涉及人眼的解剖结构和功能,解释了我们的眼睛如何通过适应来关注近距离和遥远的物体。使用射线图以各自的纠正措施讨论了近视,超极性和长老会等缺陷。最后,探索了分散在将白光分解为其成分颜色中的作用。电子的流动在电路中至关重要,安培是电流的标准单元。电池或电池提供了启动电子运动的必要电势差(以伏特为单位)。电阻是反对电子流的导体的属性,受欧姆定律的约束,该定律建立了电压与电流之间的直接关系。根据单位长度和横截面计算特定电阻。- organsims是自己的确切副本吗?电阻定义为导体阻碍电子流的能力,直接随其长度而变化,与其横截面区域成反比,并且也受材料组成的影响。在串联和平行电阻组合中,每种配置的特性都是不同的:串联,电流均匀流动,而在平行的情况下,电压在跨电阻器之间保持恒定。可以通过W = V×I×T在电阻器中耗散的电能,并以WATT作为功率标准单元。在本章中探讨了磁性和电力之间的关系,首先是对基本磁性概念和磁场线的简介。指南针的杆子是说明磁场方向的视觉辅助。使用右手拇指规则描述了由电流导体产生的磁场,而电磁体由包裹在铜线圈周围的铁芯组成。磁场和电流之间的相互作用受Fleming的左手规则的控制,这决定了将最终力的方向在放置在磁场中的导体上的方向。电动机通过电磁诱导原理将电能转换为机械能。这种现象涉及在暴露于变化的磁场时,涉及线圈内诱导的电流的产生,例如由线圈和磁体之间的相对运动产生的磁场或与电荷导体的接近性产生的电场。机械能通过称为发电机的设备将机械能转化为电能。需要适当的废物管理系统来解决这些问题。此转换基于电磁诱导,这是在线圈和导体相对运动时发生的。可以使用Fleming的右手规则确定诱导电流的方向。发电机有两种类型:直流发电机作为电能产生直流电流,而交流发电机会生成交替的电流,其方向定期变化。国内电力通常以50 Hz的频率交流,电压为220V。了解电力在家庭中的工作原理需要了解活线,中性电线和地球电线。隔热红色的活线载有电流,而中性线(绝缘黑色)为返回电流提供了一条路径。隔热绿色的接地线允许在发生故障时安全通过电流。在第14章中 - 能源来源,我们探讨了我们的能量需求如何随着生活水平而增加。为了满足这些要求,我们旨在提高效率并发现新的能源。有三种类型的能源:常规来源,例如化石燃料,热电厂和水力发电厂;通过技术增强的改进的传统资源,例如牛粪和风电场的生物气;以及非惯性来源,例如太阳能,地球能,核裂变和核融合。第15章 - 我们的环境研究了生态系统的相互联系的组成部分。生产商在其余的生态系统中将阳光转化为能量,但是每个营养水平都会损失能量,从而限制了食物链中的水平数量。本章还讨论了生物学放大倍数,这是有害化学物质通过食物链积累的过程。CFC等化学物质的使用损坏了臭氧层,从而允许紫外线辐射损害环境。废物的处置至关重要,因为如果无法正确处理,可生物降解和不可生物降解的废物都会引起环境问题。由于严重的环境问题,以新的方式看着我们的环境和资源至关重要。在第16章中,我们将探索资源的可持续管理,包括土壤,空气和水等自然资源,以及它们如何循环自然。我们将检查自己的资源使用,并考虑使用不当的后果。本章将讨论管理资源在可持续性和保护方面的重要性以及3R方法。我们将研究各种资源,例如森林,野生动植物,水,煤炭和石油,以了解其管理中的问题。在决定如何使用这些资源的决策时,要考虑环境影响和资源库存有限。寻找免费资源来帮助您了解10级科学 - 物理,化学和生物学?在Teachoo中,我们提供了NCERT解决方案,注释和额外问题的全面集合。我们的资源涵盖了该主题的各个方面,包括基于新的CBSE格式的MCQ。- 人类中有什么不同的激素,它如何分泌第8章生物如何繁殖?它以瓦(W)或马力(HP)为单位进行测量。The chapters in Class 10 NCERT Science are: Metallic and Non-metallic Properties Chapter 6 Life Processes - What are Life Processes, Nutrition - Autotrophic Nutrition, Heterotrophic Nutrition, How does Amoeba Obtain its Nutrition, Nutrition in Human Beings, What are Dental Caries - Respiration in Human Beings, Transportation in Human Beings - Heart, How does Blood travel, Platelets, Lymph, How食物和水的运输是否发生在植物中 - 人类和植物排泄物如何,透析第7章控制与协调 - 在上一章中,我们谈到了各种生命过程。在本章中,我们将讨论我们如何控制这种运动,动物的神经系统,神经元的结构 - 反射动作,人脑 - 它的各个部分和功能,什么是神经组织是什么?,植物中如何进行协调?,为什么变异很重要,单一奥兰主义的繁殖模式 - 二元裂变,多重裂变,破碎,再生,萌芽 - 营养传播,孢子形成。电力的商业单位是千瓦时(kWh)。当电流通过导体流动时,由于导体内的电阻而产生加热效果。可以使用各种公式来计算这种热量的生成,例如焦耳定律和傅立叶定律。SI热单元是Joules(J)或瓦特(W)。加热效果的应用包括电器和电炉中的加热元件。涉及磁效应,当电流通过导体流动时,它会产生磁场。电动机将电能转换为机械能。可以通过在导体周围绘制磁场线来可视化该场。右手拇指规则有助于确定磁场的方向。磁场也与其他导体相互作用,从而导致力发展。它通过在磁场中旋转电枢旋转,从而诱导扭矩并最终运动。电磁诱导是不断变化的磁通量在附近导体中诱导电压的过程。电量表使用电磁诱导测量材料的电阻。交替的电流(AC)和直流电流(DC)具有其应用,AC更常用。电动发电机将机械能转换为电能。它们通过在磁场中旋转电枢来工作,从而在附近的导体中诱导电动力。当电流过多流经导体,导致过热或损坏时,可能会发生重载和短路。接地对于安全目的至关重要。能源包括化石燃料,热电厂,水力发电,生物质量,风能和非传统源,例如太阳能,潮汐,波浪,海洋热,地热和核能等常规来源。这些来源的环境后果差异很大。生态系统是指生物与其环境之间的相互作用。它由生物成分(生物)和非生物成分(非生物)组成。营养水平代表生态系统中的喂养关系。食物链说明了通过消费的能量转移。臭氧层耗竭是由于太阳与大气中污染物相互作用的紫外线辐射过多。管理废物涉及减少,再利用,回收,重新利用和拒绝不必要的产品。可生物降解的物质可以自然分解,而非生物降解物可以无限期地持续存在。可持续生活的目标是通过保护森林和野生动植物等自然资源来实现长期环境和谐。水是必不可少的,大坝被用来存放。收集水涉及收集雨水或径流。煤炭和石油是最终耗尽的有限资源。注意:提供的文本分为各章,每个章节包含各种主题,问题和示例。可以单击提供的链接以访问每章的第一个问题。